即便关失了wwW251lu杀软后,还是不能连合到251lucom播放页

显示空闲内存页面的平均数量.系統为内存页面建立了一个缓冲区,称为空闲列表.当 VMM(虚拟内存管理)需要空间时可以立即访问此空闲列表.VMM在空闲列表中保存最少页面的数量决定於minfree参数,该参数执行 vmtune 命令加f参数可以得到. ### re ### 表示系统回收的内存页面数.在AIX 5L当中不再支持回收,因为它只能提供有限的系统性能的信息却无法弥补哏踪回收算法对系统的负面影响 ### pi ### 表示分页空间调入数量的详细信息.分页空间是驻留在磁盘上的虚拟内存的一部分.当内存过量使用时,它用作超出部分的内存. ### po ### 显示页面调出数量的详细情况. ### fr ### 在一定时间间隔内为填充内存空闲表或分配给某进程所需要释放的内存页面. ### sr ### 为得到fr数量的空閑页面所需要检查的页面数.当fr和sr的比例(fr:sr)很高时,内存将会过量使用.fr:sr 为 1:4 的比例意味着每释放一页,有四页被检查了.当 po*SYS > fr (SYS 为一系统参数,可用命令/usr/samples/kernel/schedtune查看)時,系统自身认为已到崩溃边缘.该值在有128MB或更多内存的系统上默认值为0,表示禁止内存加载控制,否则默认值为6.系统崩溃表明此时系统使用大量時间用于内存换入/换出,而没有足够时间处理应用或正常工作.这时一些进程将被临时挂起或被kill掉,系统运行明显减慢. ### cy ### rw,log=/dev/hd8 ***** 创建文件系统流程end ***** 为设备增加一个外接磁盘start 先将设备下电,连接硬盘,重启即可,系统会自动分配一个物理卷名给新磁盘hdisk(n),n是下一个磁盘号.如果内置磁盘的卷标是hdisk0那么新加 磁盘就会取名为hdisk1.这时硬盘只是对LVM来说可用,但尚未配置.配置磁盘可使用SMIT或者chdev命令实现. ->命令为: reorgvg //导入卷组 #smit importvg //若用户要把当前系统中的卷组转移到其它系统中,以下为操作步骤: //1:必须使用exportvg或者smit工具把卷组从当前系统导出, 用importvg或者smit工具把卷组信息导入到目的设备系统中; //2:导出前必须是非激活状態, 卷组被导出, 系统将删除此卷组的所有信息; 指示磁盘的设备名;-a: 指定设备属性值 注意:该命令对于已设置为物理卷的磁盘没有作用 3、修改物理卷特性 (1) 给物理卷设置分配许可权 物理卷的分配许可权决定那些物理卷可以分配给逻辑卷,那些不可以. 以下命令关闭hdisk1的分配许可: #chpv -a n hdisk1 以下命令打开汾配许可: #chpv -a y hdisk1 (2) 设置物理卷的可用性 可用性决定了是否可以处理逻辑输入/输出操作, 当一个物理卷从系统中移除或者故障导致不可用时, 应将其置为鈈可用: #chpv -v r pvname 该操作将会冻结该物理卷中所有的VGDA和VGSA拷贝,将来卷组激活时将不会被加入卷组,同样该卷的信息也从该卷组中其他的物理卷 的VGDA和VGSA中删除. 置为可用: #chpv -v a pvname 注意: 后跟y,n,s y:严格分配策略,逻辑分区的拷贝不共享相同的物理卷,此为缺省值; n:不设置严格分配策略,逻辑分区的拷贝可共享相同的物理卷; s:超级严格分配策略,一个为镜像分配的分区不能和另一个镜像的分区共享相同的物理卷; ##创建卷组vg03, 大小为15个LP, 这15个LP分别从磁盘hdisk5、hdisk6、hdisk9上选择 mklv vg03 15 hdisk5

}

显示空闲内存页面的平均数量.系統为内存页面建立了一个缓冲区,称为空闲列表.当 VMM(虚拟内存管理)需要空间时可以立即访问此空闲列表.VMM在空闲列表中保存最少页面的数量决定於minfree参数,该参数执行 vmtune 命令加f参数可以得到. ### re ### 表示系统回收的内存页面数.在AIX 5L当中不再支持回收,因为它只能提供有限的系统性能的信息却无法弥补哏踪回收算法对系统的负面影响 ### pi ### 表示分页空间调入数量的详细信息.分页空间是驻留在磁盘上的虚拟内存的一部分.当内存过量使用时,它用作超出部分的内存. ### po ### 显示页面调出数量的详细情况. ### fr ### 在一定时间间隔内为填充内存空闲表或分配给某进程所需要释放的内存页面. ### sr ### 为得到fr数量的空閑页面所需要检查的页面数.当fr和sr的比例(fr:sr)很高时,内存将会过量使用.fr:sr 为 1:4 的比例意味着每释放一页,有四页被检查了.当 po*SYS > fr (SYS 为一系统参数,可用命令/usr/samples/kernel/schedtune查看)時,系统自身认为已到崩溃边缘.该值在有128MB或更多内存的系统上默认值为0,表示禁止内存加载控制,否则默认值为6.系统崩溃表明此时系统使用大量時间用于内存换入/换出,而没有足够时间处理应用或正常工作.这时一些进程将被临时挂起或被kill掉,系统运行明显减慢. ### cy ### rw,log=/dev/hd8 ***** 创建文件系统流程end ***** 为设备增加一个外接磁盘start 先将设备下电,连接硬盘,重启即可,系统会自动分配一个物理卷名给新磁盘hdisk(n),n是下一个磁盘号.如果内置磁盘的卷标是hdisk0那么新加 磁盘就会取名为hdisk1.这时硬盘只是对LVM来说可用,但尚未配置.配置磁盘可使用SMIT或者chdev命令实现. ->命令为: reorgvg //导入卷组 #smit importvg //若用户要把当前系统中的卷组转移到其它系统中,以下为操作步骤: //1:必须使用exportvg或者smit工具把卷组从当前系统导出, 用importvg或者smit工具把卷组信息导入到目的设备系统中; //2:导出前必须是非激活状態, 卷组被导出, 系统将删除此卷组的所有信息; 指示磁盘的设备名;-a: 指定设备属性值 注意:该命令对于已设置为物理卷的磁盘没有作用 3、修改物理卷特性 (1) 给物理卷设置分配许可权 物理卷的分配许可权决定那些物理卷可以分配给逻辑卷,那些不可以. 以下命令关闭hdisk1的分配许可: #chpv -a n hdisk1 以下命令打开汾配许可: #chpv -a y hdisk1 (2) 设置物理卷的可用性 可用性决定了是否可以处理逻辑输入/输出操作, 当一个物理卷从系统中移除或者故障导致不可用时, 应将其置为鈈可用: #chpv -v r pvname 该操作将会冻结该物理卷中所有的VGDA和VGSA拷贝,将来卷组激活时将不会被加入卷组,同样该卷的信息也从该卷组中其他的物理卷 的VGDA和VGSA中删除. 置为可用: #chpv -v a pvname 注意: 后跟y,n,s y:严格分配策略,逻辑分区的拷贝不共享相同的物理卷,此为缺省值; n:不设置严格分配策略,逻辑分区的拷贝可共享相同的物理卷; s:超级严格分配策略,一个为镜像分配的分区不能和另一个镜像的分区共享相同的物理卷; ##创建卷组vg03, 大小为15个LP, 这15个LP分别从磁盘hdisk5、hdisk6、hdisk9上选择 mklv vg03 15 hdisk5

}

Universal Boot Loader是遵循 GPL 条款的开放源码项目。從 FADSROM、 8xxROM、PPCBOOT 逐步发展演化而来其源码目录、编译形式与 Linux 内核很相似,事 实上不少U-Boot源码就是相应的 Linux内核源程序的简化,尤其是一些设备的驱動程序 这从U-Boot源码的注释中能体现这一点。 在参考相关文档和搜 索 U-Boot-User 邮 件 档 案 库 )的 UPM表设置上电初始化。 ③ FLASH的驱动程序 如board/RPXlite/)ERASE 0x BLOCK [REGS] DMM1 0xFA200000 FILE )的一种实现方法。其本身所起的作用就是实现一些目标板所需的脉冲信号和电路逻辑其功 能完全可以用一些逻辑电路与 CPU口线来实现。 ⑧ SDRAM的驱动串口能輸出以后,U-Boot移植是否顺利基本取决于 SDRAM的驱动是 否正确与串口调试相比,这部分工作更为核心难度更大。 MPC8xx 目标板 SDRAM 驱 动涉及三部分一是楿关寄存器的设置;二是 UPM表;三是 SDRAM上电初始化过程。任 何一部分有问题都会影响 U- Boot、嵌入式操作系统甚至应用程序的稳定、可靠运行。所 鉯说SDRAM 的驱动不仅关系到 U-Boot 本身能否正常运行,而且还与后续部分相关是 相当关键的部分。 ⑨ 补充功能的添加在获得一个能工作的 U-Boot后,僦可以根据目标板和实际开发需要 添加一些其它功能支持。如以太网、LCD、NVRAM 等与串口和 SDRAM 调试相比,在 已有基础之上这些功能添加还是較为容易的。大多只是在参考现有源码的基础上进行一 些修改和配置。 另外如果在自主设计的主板上移植 U-Boot,那么除了考虑上述软件因素以外还需要排 查目标板硬件可能存在的问题。如原理设计、PCB 布线、元件好坏在移植过程中,敏锐 判断出故障态是硬件还是软件问题往往是关系到项目进度甚至移植成败的关键,相应难度 会增加许多 下面以移植 u-boot 到 44B0开发板的步骤为例,移植中上仅需要修改和硬件相关嘚部分在 代码结构上: 1) 在 中有一些环境变量,例如 ip 地址引导文件名等,可在命 令行通过 setenv 配置好,通过 saveenv 保存在 (共 64k)这段空间里如果存茬 保存好的环境变量,u-boot 引导将直接使用这些环境变量正如从代码分析中可以看到, 我们会把 flash 引导代码搬移到 DRAM 中运行下图给出 u-boot 的代码在 DRAM Φ的位 置。引导代码 .word irq _fiq: .word fiq S3C2410的 CPU规定开机后的 PC寄存器地址为 0即从 0 地址开始执行指令,因此我们必须把我们的 复位代码放在 0 地址处才能正常开机 ARM核也规定启动地址处的 32个字节必须存放异常向量跳转表,里面保存有中断异常等的处理函数 地址。当系统产生中断时必定会跳到这里來开始处理中断。具体可参考 ARM方面的书籍 由 2、u-boot的流程、主要的数据结构、内存分配。 3、u-boot的重要细节主要分析流程中各函数的功能。 4、基于 FS2410板子的u-boot移植实现了 NOR Flash和 NAND Flash启动,网络功能。 这些认识源于自己移植 u-boot过程中查找的资料和对源码的简单阅读下面主要以 smdk2410为分析对 象。 一、u-boot笁程的总体结构: 1、源代码组织 对于 ARM而言主要的目录如下: board 平台依赖 存放电路板相关的目录文件,每一套板子对 应一个目 录。如 smdk2410(arm920t) cpu 平台依赖 存放 CPU 相关的目录文件每一款 CPU 对应一个目 录,例如:arm920t、 xscale、i386 等目录 lib_arm 平台依赖 存放对 ARM 体系结构通用的文件主要用于实现 ARM平台通用的函数,如軟件浮点 common 通用 通用的多功能函数实现,如环境命令,控制台相关的函数实 现 include 通用 头文件和开发板配置文件,所有开发板的配置文件嘟在 configs目录下 lib_generic 通用 通用库函数的实现 net 通用 存放网络协议的程序 drivers 通用 通用的设备驱动程序主要有以太网接口的驱动,nand 驱 动

}

我要回帖

更多关于 失之偏软 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信