机器人关节就是驱动装置吗?

外骨骼结构设计结合人体结构应考虑决定下肢主运动状态的主要关节包括三个:髋关节、膝关节和踝关节;上肢包括两个:肩关节和肘关节。针对这几个关节的非刚体运动,在进行机械结构和控制方法设计时国内外有各有所研究。我国创新主体主要是高校,美国和日本的创新主体已通过产学研结合实现商业化运营,见。

. 近5年来在外骨骼机器人领域全球主要专利申请人排名情况(截止2020年5月)

我国在机械结构技术方面申请的专利数量最多,有977件,占我国申请总量的59%;在控制技术方面申请的专利有467件,占比为28%,详见中。由此可见机械结构和控制技术的仍是目前研究的重点。

根据外骨骼基本构成和组成部分如,未来人体增强外骨骼技术仍将呈现快速发展趋势,并逐步从实验室走向应用并进入市场。机械结构和控制技术是外骨骼机器人技术的研究重点,市场需求主要集中在下肢应用领域,外骨骼机器人的发展应加强多模式控制技术的研究,加强运动感知和驱动技术的研究 [1]。

对于外骨骼机器人至关重要的两个研究部分——机械结构和控制技术,仍是我国的强项,对此方面的研究成果也是颇为丰富。本文就这两个关键部分进行了一定程度上的收集和整理,将机械结构划分为助力结构设计和支撑结构设计,简明地反映了外骨骼的功能。归纳和阐述了较为前沿的控制技术。

. 20世纪60年代以来按基本构成分类的各技术专利分布情况

. 20世纪60年代以来按基本构成和组成部分专利分布

在机械结构设计中有重要的原则:在人体下肢穿戴重物的能量消耗远远大于在人体上肢的能量消耗,且越远离人体质心的部分,消耗的能量更高 [2]。因此对结构的动力学数学建模至关重要。

分析外骨骼操作的动态数学模型有两种基本方法 [3],Newton-Euler和Lagrange。关节的驱动力矩表达式为:

其中M表示系统质量矩阵, 表示连杆之间的夹角,C表示系统组逆矩阵,G表示系统重力矢量矩阵,T表示外骨骼关节力矩,t表示穿戴者的作用力矩,在穿戴者被动训练阶段,由外骨骼助力运动此处力矩可忽略不计。

如建立笛卡尔坐标系,以左腿踝关节为坐标原点,其余各连杆的质心表达式可由三角函数表达出来,左腿动能E表示为:

0

0

下肢外骨骼左腿的Lagrange函数表示为:

带入到Lagrange方程中得到各个关节的力矩表达式:

江南大学机械工程学院王刚等基于重力势能转化,同样使用Lagrange方程直接导出动力学完整形式的方程式:

Ek为系统的动能,Ep为系统的势能,此时将储能弹簧形变、储能弹簧原长、储能弹簧刚度代入系统势能计算即可得到对应结构不同弹簧的髋关节转矩曲线 [4]。

2.2. 助力结构设计

外骨骼的驱动方式包括电机驱动、气压驱动、液压驱动 [5]、人工肌肉驱动。

大腿连杆内部采用弹簧进行缓冲和储能,配合大腿后方液压杆实现压力的分散和储能助力目的。站立状态弹簧和液压杆处于轻微压缩状态,行走时腿克服重力做功使弹簧和液压杆回弹,将两者势能转化为动能,如 [6]。

在液压外骨骼结构设计中,陈建华等针对支撑相阻抗自调整控制方法研究,设计一种能适应人体运动时不同阶段刚度特性的自调整系统,改善人机耦合性和步态柔顺性 [7],如。

. 外骨骼下肢阻抗与驱动单元

天津科技大学张峻霞等提出一种髋关节外骨骼的结构设计方法,并采用电机和滚珠丝杠的组合驱动,使控制精度高,但运动轨迹较为机械 [8],如。

王记彩等针对人类负重外骨骼设计了外骨骼结构液压驱动系统方案 [9],对且其液压伺服控制,实验结果证明了该液压驱动系统响应速度快,运行平稳且冲击性小。

浙江工业大学裴翔等将柔性技术应用于外骨骼结构设计中,利用弹性板易弯曲和扭转的特性设计了一种弹性体三自由度外骨骼机器人髋关节结构,使关节部位运动使有一定角度差 [10]。杭州电子科技大学李静等在2017年基于人体下肢5杆简化模型设计了一款可穿戴式柔性膝关节外骨骼 [11],柔性环节主要由绑带提供。

电机驱动已经成为外骨骼驱动的主要方式。常规结构设计的市场可供选择方案如:泰州学院王颖卿等将电机与减速器配合,选择RE-40电机和GP-42行星齿轮箱减速器,能够得到21.696 N·m的扭矩和0.445p rad/s的转速。取得符合要求的力学性能表现 [12]。

鲍登绳是一种通过绳来传输动力的新型驱动机制,因为其灵活特性已广泛应用于需要复杂且变化的传输路径形状的许多机器人应用中。通过将电机放置于远离人体下肢而是接近人体质心的部位,可以有效地减少因为重量所带来的人体能量消耗,也可以减少机器人的重量,尺寸和复杂性 [13]。

J.F. Veneman等人设计了一款基于SEA驱动器的鲍登绳驱动的下肢外骨骼LOPES如所示。它由一个伺服电机、一个鲍登绳传动装置和一个基于弹性元件的反馈环组成,SEA驱动器的组成是在电机和执行器之间加入弹性元件如弹簧,可以是线性弹簧或扭转弹簧,弹性元件有利于增加机器人与未知环境的接触稳定性结构简图如所示,这是一种新型的柔性驱动器,有很大的发展潜力。

2.3. 支撑结构设计

如,大腿部连接杆固定并在后部展开使其能形成一个三角架结构,使其对限制膝关节活动直接将重量传递到地面。大腿固定板、支撑杆、滑条杆所组成的机构在人体坐下时可展开成三角形提高装置的稳定性。滑条杆在滑槽内滑动,人体处在坐下状态时弹簧处在压缩状态使装置锁死,滑条杆无法滑动,从而起到自锁作用 [14]。

. 地面支撑式装置结构示意图

如,在大腿处的支撑板上固定一滑槽和连杆,在滑槽上安装有手柄可手动控制装置的展开与收缩,这样提高了装置的可靠性,,在展开时通过三根杆并列分布的形状可构成多组三角形,这种方法也是对膝关节限制的支撑方式,虽然对行走姿态不会有影响。

. 关节支撑式装置结构示意图

在纯机械结构支撑思路下,出现一种双模式外骨骼结构设计,如。两种髋关节的全约束状态下可进行托举和座椅 [15]。

. 双模式外骨骼模式转换过程示意图

膝关节机械自锁机构允许穿戴者行走时在摆动相时膝关节自由屈伸,而在支撑相时将膝关节自锁保持完全伸直 [16]。

1) Becker Orthopedic 9001 E-Knee。该膝踝足矫形器膝关节自锁的原理图如。它由两个圆形棘轮板以及弹簧组成,其中一个棘轮板位于电磁线圈内。通过电磁线圈的通断电使棘轮板压合和分离。

2) 霍顿姿势控制矫形器。地面反作用力克服弹簧力作用于具有变形能力的马镫,马镫变形向上运动推动推杆使棘轮棘齿摩擦自锁,使膝关节处于伸直状态,原理图如。

3) 皮带夹紧膝关节矫形器。足底传感器检测到压力信息,控制系统控制电磁铁向下伸出,膝关节屈膝带动槌子旋转,槌子和铁砧相互挤压,使膝关节无法继续旋转。原理图如,当人处于行走摆动相时,皮带在弹簧的作用下带动槌子回到原位,电磁铁断电铁芯回到原来的位置。

. 霍顿姿势控制关节自锁原理图

. 皮带夹紧膝关节自锁原理图

4) 液压自锁膝关节。Louis Goudreau等人于2010年设计了一种基于角速度控制的液压自锁膝关节如所示。

其工作原理使膝关节弯曲时手臂旋转减小屈曲腔室体积。使流体被迫通过阀门通道进入伸展腔室。膝关节弯曲角速度高低可影响流体作用在阀门上的阻力,从而使阀门开闭实现自锁作用。膝关节自锁角速度的大小可以通过调整阀门弹簧力的大小实现。

5) 磁流变液自锁膝关节。如所示为香港中文大学陈锦州等设计的外骨骼。此外骨骼的膝关节为磁流变液制动器,应用于辅助膝关节支撑。磁流变液的粘性会随着磁场强度的变化而变化,当磁场强度达到一定值的时候,它会表现为固态,以起到自锁的作用。

控制技术本质上是对采集到的信号处理成电信号正确并按照期望传递到驱动上。因此根据信号源的种类和收集方式的不同,控制技术的研究也会有所区别。信号源主要分为生物力学信号、表面肌电信号和脑电信号 [17]。

加利福尼亚理工学院Richard Anderson实验室2015年研制了一种由脑电信号控制的上肢外骨骼,将采集电极置于运动感觉区域可以识别与运动相关的脑电信号,提取信号转换成对外骨骼的控制命令,帮助瘫痪者完成饮食等基本动作 [3]。

日本筑波大学研制的一种动力髋膝关节可穿戴式机器人HAL-5采用肌电控制和预定义步态轨迹控制的混合控制方法来为穿戴者助力,利用肌电信号来判断穿戴者的运动意图从而驱动执行器运动,当穿戴者的肌电信号难以采集时,则采用预定义步态轨迹控制方法。

上海傅里利公司于2019年发布一款X2动力可穿戴外骨骼,通过适配多种外接设备,结合脑电帽可将用户想象意图信号翻译成控制外骨骼的命令,配合高性能伺服电机与减速器提供大扭矩输出。北京航空航天大学张腾宇等 [18] 通过采集多名大腿截肢患者的残端面肌电信号,利用分段扫描求波长的方法提取有效动作信号,进行特征提取分析和动作分类识别,并探讨了特征量优化的方法。北京大学王启宁等 [2] 提出了全新的非接触式电容传感方法,该方法以金属电极不接触皮肤的方式测量肌肉收缩信号;介绍了电容传感的原理,分析了基于该方法测量肌肉收缩形状变化的机理;分别介绍了非接触式电容传感方法在小腿智能动力假肢控制和上肢运动识别中的应用;针对下肢智能假肢控制,提出了基于非接触式电容传感的运动模态以及模态切换的识别。为了进一步提高系统的可穿戴性,他们又提出了基于柔性可延展液态金属电极的电容传感系统,并进行了初步的试验验证

控制系统的设计会直接影响驱动效果和人机交互性 [20]。控制策略主要有四种:灵敏度放大控制、预编程控制、人机交互力反馈控制、基于肌电信号控制 [17]。系统需要对信号收集、提取和处理,国内在控制系统设计领域也是多样的。

前期建立力模型,得到系统的输入力和输出力的准确关系。在空间位置要求比较小的情况下,通过测量输入端的力,可以通过模型控制输出力的大小,对输入力进行补偿,使得输出力能够达到预先设定的输出力。假设信号源是位移量,对信号源进行一系列处理后建立补偿模型,再经过控制器按设定程序传递到驱动器上执行,控制器的输出能被传感器采集并作为反馈信号进入补偿模型。系统的总体框图如所示。补偿模型的目的是使输出信号正确,弥补环境、人为等不可抗因素引起的误差。

测量数据作为信号源输入到系统中。蔡校蔚等通过重心投影法测量原理,设计了一种基于应变片式压力传感器的重心实时测量系统,结构简单、体积小巧、反应灵敏且响应速度快 [21]。考虑到力传感器和增量式编码器的输出会存在一定的误差和干扰,哈尔滨工业大学张浩的柔性膝关节外骨骼控制设计中采用RMS滤波器,对输出波形进行滤波 [13],对系统输入进行迭代计算,采用指数加权的误差平方作为评价函数,对权向量进行更新算法。RLS自适应滤波器具有相对较快的收敛速率,同时对于输入的自相关矩阵的特征值的分散程度不敏感,可以很好的达到滤波的效果。广西科技大学罗定吉等利用扩张状态观测器估计系统未建模部分和外部总扰动,采用自抗扰控制方法(ADRC)对其进行消除 [22]。吴青鸿等借助模糊PID控制方法分别研究了传统PID与模糊PID控制技术对外骨骼控制的影响规律,利用模糊推理逻辑对PID参数进行修正,完成对步态轨迹的快速准确跟踪 [23]。

本文基于外骨骼各技术研究现状和发展趋势,对其在关节上的机械结构设计和控制技术的现状进行了概括。将外骨骼结构设计分为助力结构设计、支撑机构设计和自锁等方面进行讨论,按信号源和控制环节分类归纳出现有的部分研究成果。把外骨骼的设计按关键技术模块化。

高层次人才启动项目(XJGC);贵州省科技计划项目(黔科合基础[号);国家级大学生创新创业训练计划项目()。

}

驱动装置是带动臂部到达指定位置的动力源。通常动力是直接经电缆、齿轮箱或其他方法送至臂部。工业机器人驱动系统常用的驱动方式主要有液压驱动、气压驱动以及电气驱动三种。工业机器人的驱动方式主要分为直接驱动和间接驱动。那什么是直接驱动和间接驱动?

直接驱动方式是指驱动器的输出轴和机器人手臂的关节轴直接相连的方式。这种方式的驱动器和关节之间的机械系统较少,因而能够减少摩擦等非线性因素的影响,控制性能比较好。然而,为了直接驱动手臂的关节,驱动器的输出转矩必须很大。此外,控制系统还必须考虑动力学上对手臂运动的影响。

四自由度平面关节型机器人

直接驱动方式的机器人通常称为 DD 机器人(Direet Drive Robot,DDR)。DD 机器人驱动电动机通过机械接口直接与关节连接,在驱动电动机和关节之间没有速度和转矩的转换。日本、美国等工业发达国家已经开发出性能优异的 DD 机器人。例如,美国 Adept 公司研制出带有视觉功能的四自由度平面关节型 DD 机器人。日本大日机工公司研制成功了五自由度关节型 DD 600V 机器人,其最大工作范围为 1.2m,可搬质量为 5kg,最高运动速度为8.2m/s,重复定位精度为 0.05mm。

间接驱动方式是把驱动器的动力通过减速器、钢丝绳、传送带或平行连杆等装置传递给关节。间接驱动有带减速器的电动机驱动和远距离驱动两种方式。目前大部分机器人的关节是间接驱动。

中小型机器人一般采用普通的直流伺服电动机、交流伺服电动机或步进电动机作为机器人的执行电动机。由于电动机速度较高,输出转矩又大于驱动关节所需要的转矩,所以必须使用带减速器的电动机驱动。但是,间接驱动带来了机械传动中不可避免的误差,引起冲击振动,影响机器人系统的可靠性,并增加关节质量和尺寸。

由于手臂通常采用悬臂梁结构,因而多自由度机器人关节上安装减速器会使手臂根部关节驱动器的负载增大。远距离驱动将驱动器和关节分离,目的在于减少关节体积、减轻关节质量。

驱动元件是执行装置,就是按照信号的指令,将来自电、液压和气压等的能量转换成选择运动、直线运动等方式的机械能的装置。按照利用的能源来分,驱动元件主要分为电动执行装置、液压执行装置和气压执行装置。因此机器人关节的驱动方式有液压驱动、气压驱动和电气驱动。

}

关于我们 您需要了解更多

我们的质量保障 产品放心选择

河北新普智能科技有限公司

   河北新普智能科技有限公司(SMPO)是AGV驱动轮、AGV舵轮、AGV顶升旋转机构、机器人轮毂电机、机器人关节模组的专业生产厂家。 SMPO智能模组将外转子电机、伺服驱动器、精密减速机、编码器等高度集成在一个空间里,相对于传统同类型产品具有结构紧凑、转矩体积比高、高定位精度、高旋转精度、通用性强、安装维护简单等诸多优势。 SMPO智能模组广泛应用于AGV移动机器人、协作机器人、数控机床等领域。 我们可大批量配套供应标准产品,同事也可提供中小批量个性化产品的定制。 …

}

我要回帖

更多关于 机器人手臂的驱动方式 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信