高数:如图,为什么x=2这一无穷间断点是第二类间断点吗段点(无穷间断点)?x=2不是不在该函数的定义域内吗?

函数的可积性是针对于定积分提出来的,跟不定积分和广义积分没啥关系.
2,所有的充分条件中都要求“闭区间”这个最重要的条件.
3,关于第二个充分条件的讨论:有界且有有限个间断点则说明间断点的类型包括第一类间断点(可去间断点和跳跃间断点),第二类间断点中的震荡间断点而不包括无穷间断点,因为无穷间断点使得函数在闭区间内无界.进一步来思考:一般定积分我们用牛-莱公式计算,而第一类间断点使得积分不存在原函数,所以应该用分段积分法计算.第二类间断点,震荡间断点比如说SIN(1/X)的积分虽然可积,但积分如何计算至今还没碰见这类问题,需查积分表,这也超出了我们的考察范围!无穷间断点不可积,但可以用广义积分判断其敛散性,若其他情况,只要能判断其原函数存在,用牛-莱公式即可!
4,关于可积充分条件的第三个条件:函数的单调性是对于连续函数说的,若有间断点,就无所谓单调性了,所以教材上并未列出这个条件,估计是二李想用“闭区间上单调函数必有界”

解析看不懂?免费查看同类题视频解析

}

《高数重要知识点》由会员分享,可在线阅读,更多相关《高数重要知识点(18页珍藏版)》请在装配图网上搜索。

1、高等数学上册重要知识点第1章 函数与极限一. 函数的概念1 两个无穷小的比较设且(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0,称g(x)是比f(x)低阶的无穷小。(2)l 0,称f (x)与g(x)是同阶无穷小。(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) g(x)2 常见的等价无穷小当x 0时sin x x,tan x x, x, x1 cos x , 1 x , x , 二 求极限的方法1 两个准则准则1单调有界数列极限一定存在准则2(夹逼定理)设g(x) f (x) h(x) 放缩求极限若,则2 两个重要公式公式1公式23 用无穷

2、小重要性质和等价无穷小代换4 用泰勒公式当时,有以下公式,可当做等价无穷小更深层次5 洛必达法则定理1 设函数、满足下列条件:(1),;(2)与在的某一去心邻域内可导,且;(3)存在(或为无穷大),则 这个定理说明:当存在时,也存在且等于;当为无穷大时,也是无穷大这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(ospital)法则.例1计算极限.解 该极限属于“”型不定式,于是由洛必达法则,得.例2计算极限解 该极限属于“”型不定式,于是由洛必达法则,得注 若仍满足定理的条件,则可以继续应用洛必达法则,即二、型未定式定理2 设函数、满足下列条件:(1),;(2

3、)与在的某一去心邻域内可导,且;(3)存在(或为无穷大),则 注:上述关于时未定式型的洛必达法则,对于时未定式型同样适用例3计算极限解 所求问题是型未定式,连续次施行洛必达法则,有使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“”和“”型的未定式,其它的未定式须先化简变形成“”或“”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要因此,在该法则失效时并不能断定原极限不存在 7利用导数定义求极限基本公式(如果存在)8 利用定积分定义求极限 基本格式(如果存在)3 函数的间断点的分类函数的间断点分为两类:(1) 第一类间断点设 是

4、函数y = f (x)的间断点。如果f (x)在间断点处的左、右极限都存在,则称是f (x)的第一类间断点。第一类间断点包括可去间断点和跳跃间断点。(2)第二类间断点第一类间断点以外的其他间断点统称为第二类间断点。常见的第二类间断点有无穷间断点和振荡间断点。4 闭区间上连续函数的性质 在闭区间a,b上连续的函数f (x),有以下几个基本性质。这些性质以后都要用到。定理1(有界定理)如果函数f (x)在闭区间a,b上连续,则f (x)必在a,b上有界。定理2(最大值和最小值定理)如果函数f (x)在闭区间a,b上连续,则在这个区间上一定存在最大值M 和最小值m 。定理3(介值定理)如果函数f (

5、x)在闭区间a,b上连续,且其最大值和最小值分别为M 和m ,则对于介于m和M 之间的任何实数c,在a,b上至少存在一个 ,使得f ( ) = c推论:如果函数f (x)在闭区间a,b上连续,且f (a)与f (b)异号,则在(a,b)内至少存在一个点 ,使得f ( ) = 0这个推论也称为零点定理第二章 导数与微分1.复合函数运算法则设y = f (u),u = (x),如果 (x)在x处可导,f (u)在对应点u处可导,则复合函数y = f (x)在x处可导,且有对应地,由于公式不管u 是自变量或中间变量都成立。因此称为一阶微分形式不变性。2.由参数方程确定函数的运算法则设x = (t),

6、y =确定函数y = y(x),其中存在,且 0,则二阶导数3.反函数求导法则设y = f (x)的反函数x = g(y),两者皆可导,且f (x) 0则4 隐函数运算法则(可以按照复合函数理解)设y = y(x)是由方程F(x, y) = 0所确定,求y的方法如下:把F(x, y) = 0两边的各项对x求导,把y 看作中间变量,用复合函数求导公式计算,然后再解出y 的表达式(允许出现y 变量)5 对数求导法则 (指数类型 如)先两边取对数,然后再用隐函数求导方法得出导数y。对数求导法主要用于:幂指函数求导数多个函数连乘除或开方求导数(注意定义域 P106 例6)关于幂指函数y = f (x)

7、g (x) 常用的一种方法,y = 这样就可以直接用复合函数运算法则进行。6 可微与可导的关系f (x)在处可微 f (x)在 处可导。7 求n阶导数(n 2,正整数)先求出 y, y, ,总结出规律性,然后写出y(n),最后用归纳法证明。有一些常用的初等函数的n 阶导数公式(1)(2)(3) ,(4) , (5),第3章 微分中值定理与导数应用一 罗尔定理设函数 f

(x)和g(x)满足:(1)在闭区间a,b上皆连续;(2)在开区间(a,b)内皆可导;且g(x) 0则存在 (a,b)使得(注:柯西中值定理为拉格朗日中值定理的推广,特殊情形g(x) = x 时,柯西中值定理就是拉格朗日中值定理。)四 泰勒公式( 估值 求极

9、限(麦克劳林) P145 T10)定理 1(皮亚诺余项的n 阶泰勒公式)设f (x)在0 x 处有n 阶导数,则有公式,称为皮亚诺余项对常用的初等函数如,sin x,cos x,ln(1+ x)和 ( 为实常数)等的n阶泰勒公式都要熟记。定理2(拉格朗日余项的n 阶泰勒公式)设f (x)在包含0 x 的区间(a,b)内有n +1阶导数,在a,b上有n阶连续导数,则对xa,b,有公式 ,,称为拉格朗日余项上面展开式称为以0 x 为中心的n 阶泰勒公式。当=0 时,也称为n阶麦克劳林公式。导数的应用一 基本知识设函数f (x)在处可导,且为f (x)的一个极值点,则。我们称x 满足的 称为的驻点,

10、可导函数的极值点一定是驻点,反之不然。极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断。极值点判断方法 第一充分条件 在的邻域内可导,且,则若当时,,当时,则为极大值点;若当时,当时,则为极小值点;若在的两侧不变号,则不是极值点. 第二充分条件在处二阶可导,且,则若,则为极大值点;若,则为极小值点.二 凹凸性与拐点1凹凸的定义设f (x)在区间I 上连续,若对任意不同的两点1 2 x , x ,恒有则称f (x)在I 上是凸(凹)的。在几何上,曲线y = f (x)上任意两点的割线在曲线下(上)面,则y = f (x)是凸(凹)的。如果曲线y = f (x)有切线的话,每一点的切线

11、都在曲线之上(下)则y = f (x)是凸(凹)的。2 拐点的定义曲线上凹与凸的分界点,称为曲线的拐点。3 凹凸性的判别和拐点的求法设函数f (x)在(a,b)内具有二阶导数,如果在(a,b)内的每一点x,恒有 0,则曲线y = f (x)在(a,b)内是凹的;如果在(a,b)内的每一点x,恒有 0,则曲线y = f (x)在(a,b)内是凸的。求曲线y = f (x)的拐点的方法步骤是:第一步:求出二阶导数;第二步:求出使二阶导数等于零或二阶导数不存在的点 ;第三步:对于以上的连续点,检验各点两边二阶导数的符号,如果符号不同,该点就是拐点的横坐标;第四步:求出拐点的纵坐标。四 渐近线的求法五

12、 曲率第四章 不定积分一基本积分表:二 换元积分法和分部积分法换元积分法(1)第一类换元法(凑微分):(2)第二类换元法(变量代换):分部积分法使用分部积分法时被积函数中谁看作谁看作有一定规律。记住口诀,反对幂指三为,靠前就为,例如,应该是为,因为反三角函数排在指数函数之前,同理可以推出其他。三 有理函数积分 有理函数: 其中是多项式。 简单有理函数: 1、“拆”;2、变量代换(三角代换、倒代换、根式代换等).第五章 定积分一概念与性质1、 定义:2、 性质:(10条)(3)3 基本定理变上限积分:设,则推广:NL公式:若为的一个原函数,则4 定积分的换元积分法和分部积分法第6章 定积分的应用

13、(一) 平面图形的面积1、 直角坐标: 2、 极坐标:(二) 体积1、 旋转体体积:a)曲边梯形轴,绕轴旋转而成的旋转体的体积: b)曲边梯形轴,绕轴旋转而成的旋转体的体积: (柱壳法)2、 平行截面面积已知的立体:(三) 弧长1、 直角坐标:2、 参数方程:极坐标:第7章 微分方程(一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程.阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同.特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程,两边积分(三) 齐次型方程,设,则;或,设,则(四) 一阶线性微分方程用常数变易法或用公式: (五) 可降阶的高阶微分方程1、,两边积分次;2、(不显含有),令,则;3、(不显含有),令,则(六) 线性微分方程解的结构1、是齐次线性方程的解,则也是;2、是齐次线性方程的线性无关的特解,则是方程的通解;3、为非齐次方程的通解,其中为对应齐次方程的线性无关的解,非齐次方程的特解.(七) 常系数齐次线性微分方程二阶常系数齐次线性方程:特征方程:,特征根: 特征根通 解实根 (八) 常系数非齐次线性微分方程 1、设特解,其中 2、设特解,其中 ,

}

建议搭配如下视频食用 ~

要弄清楚它们之间的关系,首先我们来看定积分和不定积分是什么。

说白了,不定积分就是求被积函数的一系列原函数(考虑到后面加了个任意常数c)。

所以一个函数有不定积分就可以说它有原函数

不定积分是一个带有∫号的没有上下限的一个式子或者说是这个式子的运算,比如说

说明1:上下限,是定积分中的概念,后面定积分中有写,不定积分这里用不到。

说明2:上式的 C 为任一常数。所以不定积分的运算,是把一个映射到另外一个函数(族)。

说明3:上式等号“左边”的式子是一个不定积分,这个运算经常被称为:y=2x的不定积分(对y=2x做不定积分)。没有疑义的情况下,在不严格的口头交流中,“y=”、“不定”可以省略,直接叫“2X的积分”。

定积分最初被发明出来是为了求不规则图形的面积,它是与面积有关的

所以如果能求出一个函数在某个区间与 x 轴围成的面积,那么它在这个区间的定积分就是存在的,也可以说这个函数在这个区间是可积的

3.定积分和原函数的关系:

那么他们之间有什么关系呢?其实一开始他们之间一点关系都没有。直到后来一个“牛掰”的理论将它们建立了联系,它就是牛顿-莱布尼兹。它是这样说的:

 这样就将原函数与定积分联系在了一起。

a. f(x) 连续时,变上限积分和原函数的联系:

(1)如果 f(x) 在区间 [a,b] 上有第一类间断点或无穷间断点,则其在该区间上没有原函数

 (2)如果 f(x) 在区间[a,b] 上有振荡间断点,则其在该区间上可能有原函数

由于考研主要考含第一类间断点的变限积分,所以这里仅以第一类间断点为例。同时,因为变限积分是定积分变形而来的,故其也可以表示面积。所以接下来以面积来描述变限积分的情况。

首先大家知道:有限个有限长的线,它们的面积总和为0,因此对于一个二维图形而言,增加或者减少若干根有限长的线,其面积不变。如下图:

 跳跃间断点的情况:

对于跳跃间断点的情况,我们可以将其拆成若干个面积和,如下图:


考研常常研究的是有界分段函数的变上限积分,且函数在每个分段区间内是连续的。因此我们主要研究分段点处的情况,一般来说分为以下三种情况:

此时分段函数在定义域内是连续的,所以可以用牛顿-莱布尼茨进行计算:

 那么此时原函数怎么算呢?具体如下:

2.分段点为可去间断点

根据之前所讲,有若干个可去间断的函数所围成的面积等于对应连续函数所围成的面积。所以我们直接算连续函数围成的面积就可以,而连续函数所围成的面积可以通过牛顿-莱布尼茨算,这样就搞定了。

3.分段点为跳跃间断点

根据之前讲的拆分面积,将函数拆分成若干个子区间的连续函数,进行计算就可以了。注意此时需要根据分段点来对变上限函数分段。以下图为例,c 是函数  g(x)  的一个跳跃间断点。

 这里只举了一个跳跃间断点的情况,多个跳跃间断点做法类似,可自行思考。

重点技巧:观察三种情况,对于求分段函数的变上限积分函数,有一个通用做法:


还是分别以可去间断点和跳跃间断点来说明:


感觉东西有点杂,故在此总结一哈~ 直接来背,整理一下思路 嘻嘻嘻

以下内容不讨论反常积分。

(一)、什么样的函数一定可积(即存在定积分)?

  1. 闭区间上的连续函数一定可积
  2. 闭区间上的单调函数一定可积
  3. 闭区间上有界且只有有限间断点的函数一定可积

(二)、什么样的函数一定不可积?——闭区间上的无界函数。

上述结论说明——有界是可积的必要条件,可积一定有界,有界未必可积。

上述结论直接背就可以,无需掌握证明。

(一)、什么样的函数一定存在原函数?——闭区间上的连续函数

(二)、什么样的函数一定不存在原函数?

——有第一类间断点(即导函数无第一类间断点)或无穷间断点(在该点有定义)

——有振荡间断点不一定有原函数


1、f(x)与可积的关系

1、可积指的是定积分存在

2、有界是可积的必要条件,可积一定有界,有界未必可积

4、f(x)在[a,b]有有限个第一类间断点一定可积

5、f(x)在[a,b]有有限个有界震荡间断点一定可积

6、f(x)在[a,b]无界,则一定不可积

8、f(x)在[a,b]有第一类间断点,则在包含了间断点的区间内必没有原函数

9、f(x)在[a,b]有无穷间断点,则包含了间断点的区间内必没有原函数

10、f(x)在[a,b]有震荡间断点,可能有原函数

11、f(x)在[a,b]上有原函数,如果有间断点,一定是震荡间断点


1、前提是f(x)可积


3、原函数存在与可积的关系


1、若可积,则便存在。

2、若可积,则便连续。

即变限积分天生连续(存在即连续)。

若有一个可去间断点(其余点均连续),

但此时求导后不是,而是将可去间断点补为连续点后的函数

而且,此时没有原函数

若有一个跳跃间断点(其余点均连续),

则在不可导, 此时没有原函数

6、若是奇函数,则为偶函数。若为偶函数,则为奇函数。

7、若以为周期,则以为周期的充要条件为“”.


f(x)在一个周期内积分为0的其他描述:【660例题】

参考于 zhihu新威考研

}

我要回帖

更多关于 无穷间断点是第二类间断点吗 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信