如何用数学归纳法证明椭圆第二定义证明过程的存在性?

要证明{a}是等差数列,可以证明其通项符合等差数列的通项公式的形式,即证:a=a+(n-1)d.命题与n有关,考虑是否可以用数学归纳法进行证明.【解】设a-a=d,猜测a=a+(n-1)d当n=1时,a=a,∴当n=1时猜测正确.当n=2时,a+(2-1)d=a+d=a,∴当n=2时猜测正确.假设当n=k(k≥2)时,猜测正确,即:a=a+(k-1)d,当n=k+1时,a=S-S=-,将a=a+(k-1)d代入上式,得到2a=(k+1)(a+a)-2ka-k(k-1)d,整理得(k-1)a=(k-1)a+k(k-1)d,因为k≥2,所以a=a+kd,即n=k+1时猜测正确.综上所述,对所有的自然数n,都有a=a+(n-1)d,从而{a}是等差数列.【注】将证明等差数列的问题转化成证明数学恒等式关于自然数n成立的问题.在证明过程中a的得出是本题解答的关键,利用了已知的等式S=、数列中通项与前n项和的关系a=S-S建立含a的方程,代入假设成立的式子a=a+(k-1)d解出来a.另外本题注意的一点是不能忽视验证n=1、n=2的正确性,用数学归纳法证明时递推的基础是n=2时等式成立,因为由(k-1)a=(k-1)a+k(k-1)d得到a=a+kd的条件是k≥2.【另解】可证a-a=a-a对于任意n≥2都成立:当n≥2时,a=S-S=-;同理有a=S-S=-;从而a-a=-n(a+a)+,整理得a-a=a-a,从而{a}是等差数列.一般地,在数列问题中含有a与S时,我们可以考虑运用a=S-S的关系,并注意只对n≥2时关系成立,象已知数列的S求a一类型题应用此关系最多.六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题.直线与二次曲线的参数方程都是用参数法解题的例证.换元法也是引入参数的典型例子.辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律.参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系.参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支.运用参数法解题已经比较普遍.参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题.Ⅰ、再现性题组:1.设2=3=5>1,则2x、3y、5z从小到大排列是________________.2.(理)直线上与点A(-2,3)的距离等于的点的坐标是________.(文)若k0时,f(x)6.椭圆+=1上的点到直线x+2y-=0的最大距离是_____.A.3B.C.D.2【简解】1小题:设2=3=5=t,分别取2、3、5为底的对数,解出x、y、z,再用“比较法”比较2x、3y、5z,得出3y2小题:(理)A(-2,3)为t=0时,所求点为t=±时,即(-4,5)或(0,1);(文)已知曲线为椭圆,a=1,c=,所以e=-;3小题:设z=bi,则C=1-b+2i,所以图像为:从(1,2)出发平行于x轴向右的射线;4小题:设三条侧棱x、y、z,则xy=6、yz=4、xz=3,所以xyz=24,体积为4.5小题:f(0)=0,f(0)=f(x)+f(-x),所以f(x)是奇函数,答案:减;6小题:设x=4sinα、y=2cosα,再求d=的最大值,选C.Ⅱ、示范性题组:例1.实数a、b、c满足a+b+c=1,求a+b+c的最小值.【分析】由a+b+c=1想到“均值换元法”,于是引入了新的参数,即设a=+t,b=+t,c=+t,代入a+b+c可求.【解】由a+b+c=1,设a=+t,b=+t,c=+t,其中t+t+t=0,∴a+b+c=(+t)+(+t)+(+t)=+(t+t+t)+t+t+t=+t+t+t≥,所以a+b+c的最小值是.【注】由“均值换元法”引入了三个参数,却将代数式的研究进行了简化,是本题此种解法的一个技巧.本题另一种解题思路是利用均值不等式和“配方法”进行求解,解法是:a+b+c=(a+b+c)-2(ab+bc+ac)≥1-2(a+b+c),即a+b+c≥.两种解法都要求代数变形的技巧性强,多次练习,可以提高我们的代数变形能力.例2.椭圆+=1上有两点P、Q,O为原点.连OP、OQ,若k·k=-,①求证:|OP|+|OQ|等于定值;②求线段PQ中点M的轨迹方程.【分析】由“换元法”引入新的参数,即设(椭圆参数方程),参数θ、θ为P、Q两点,先计算k·k得出一个结论,再计算|OP|+|OQ|,并运用“参数法”求中点M的坐标,消参而得.【解】由+=1,设,P(4cosθ,2sinθ),Q(4cosθ,2sinθ),则k·k==-,整理得到:cosθcosθ+sinθsinθ=0,即cos(θ-θ)=0.∴|OP|+|OQ|=16cosθ+4sinθ+16cosθ+4sinθ=8+12(cosθ+cosθ)=20+6(cos2θ+cos2θ)=20+12cos(θ+θ)cos(θ-θ)=20,即|OP|+|OQ|等于定值20.由中点坐标公式得到线段PQ的中点M的坐标为,所以有()+y=2+2(cosθcosθ+sinθsinθ)=2,即所求线段PQ的中点M的轨迹方程为+=1.【注】由椭圆方程,联想到a+b=1,于是进行“三角换元”,通过换元引入新的参数,转化成为三角问题进行研究.本题还要求能够熟练使用三角公式和“平方法”,在由中点坐标公式求出M点的坐标后,将所得方程组稍作变形,再平方相加,即(cosθ+cosθ)+(sinθ+sinθ),这是求点M轨迹方程“消参法”的关键一步.一般地,求动点的轨迹方程运用“参数法”时,我们可以将点的x、y坐标分别表示成为一个或几个参数的函数,再运用“消去法”消去所含的参数,即得到了所求的轨迹方程.本题的第一问,另一种思路是设直线斜率k,解出P、Q两点坐标再求:设直线OP的斜率k,则OQ的斜率为-,由椭圆与直线OP、OQ相交于PQ两点有:,消y得(1+4k)x=16,即|x|=;,消y得(1+)x=16,即|x|=;所以|OP|+|OQ|=()+()==20.即|OP|+|OQ|等于定值20.在此解法中,利用了直线上两点之间的距离公式|AB|=|x-x|求|OP|和|OQ|的长.七、反证法与前面所讲的方法不同,反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得.法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”.具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明.反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”.在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”.反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假.再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真.所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的.反证法的证题模式可以简要的概括我为“否定→推理→否定”.即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”.应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立.实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立.在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法.用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”.在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”.一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显.具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆.Ⅰ、再现性题组:1.已知函数f(x)在其定义域内是减函数,则方程f(x)=0______.A.至多一个实根B.至少一个实根C.一个实根D.无实根2.已知aab>abB.ab>ab>aC.ab>a>abD.ab>ab>a3.已知α∩β=l,aα,bβ,若a、b为异面直线,则_____.A.a、b都与l相交B.a、b中至少一条与l相交C.a、b中至多有一条与l相交D.a、b都与l相交4.四面体顶点和各棱的中点共10个,在其中取4个不共面的点,不同的取法有_____.(97年全国理)A.150种B.147种C.144种D.141种【简解】1小题:从结论入手,假设四个选择项逐一成立,导出其中三个与特例矛盾,选A;2小题:采用“特殊值法”,取a=-1、b=-0.5,选D;3小题:从逐一假设选择项成立着手分析,选B;4小题:分析清楚结论的几种情况,列式是:C-C×4-3-6,选D.Ⅱ、示范性题组:SCABO例1.如图,设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点.求证:AC与平面SOB不垂直.【分析】结论是“不垂直”,呈“否定性”,考虑使用反证法,即假设“垂直”后再导出矛盾后,再肯定“不垂直”.【证明】假设AC⊥平面SOB,∵直线SO在平面SOB内,∴AC⊥SO,∵SO⊥底面圆O,∴SO⊥AB,∴SO⊥平面SAB,∴平面SAB∥底面圆O,这显然出现矛盾,所以假设不成立.即AC与平面SOB不垂直.【注】否定性的问题常用反证法.例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾.例2.若下列方程:x+4ax-4a+3=0,x+(a-1)x+a=0,x+2ax-2a=0至少有一个方程有实根.试求实数a的取值范围.【分析】三个方程至少有一个方程有实根的反面情况仅有一种:三个方程均没有实根.先求出反面情况时a的范围,再所得范围的补集就是正面情况的答案.【解】设三个方程均无实根,则有,解得,即-(其中x∈R且x≠),证明:①.经过这个函数图像上任意两个不同点的直线不平行于x轴;②.这个函数的图像关于直线y=x成轴对称图像.【分析】“不平行”的否定是“平行”,假设“平行”后得出矛盾从而推翻假设.【证明】①设M(x,y)、M(x,y)是函数图像上任意两个不同的点,则x≠x,假设直线MM平行于x轴,则必有y=y,即=,整理得a(x-x)=x-x,∵x≠x∴a=1,这与已知“a≠1”矛盾,因此假设不对,即直线MM不平行于x轴.②由y=得axy-y=x-1,即(ay-1)x=y-1,所以x=,即原函数y=的反函数为y=,图像一致.由互为反函数的两个图像关于直线y=x对称可以得到,函数y=的图像关于直线y=x成轴对称图像.【注】对于“不平行”的否定性结论使用反证法,在假设“平行”的情况下,容易得到一些性质,经过正确无误的推理,导出与已知a≠1互相矛盾.第②问中,对称问题使用反函数对称性进行研究,方法比较巧妙,要求对反函数求法和性质运用熟练.第一篇 数学具体解题方法 代入法直接法定义法向量坐标法查字典法挡板模型法等差中项法逆向化法极限化法整体化法参数法交轨法几何法弦中点轨迹求比较法基本不等式法以题攻题法综合法分析法放缩法反证法换元法构造法数学归纳法配方法判别式法序轴标根法函数与方程思想整体思想比较法综合法向量平行法筛选法(排除法)向量垂直法数形结合法同一法特殊值法累加法 回代法(验证法)累乘法特殊图形法倒序相加法 分类法分组法运算转换法公式法结构转换法错位相减法 割补转换法裂项法导数法迭代法象限分析法角的变换法补集法公式的变形及逆距离法用法变更主元法降幂法差异分析法升幂法反例法“1”的代换法阅读理解法引入辅助角法信息迁移法三角函数线法类比联想法构造对偶式法抽象概括法构造三角形法逻辑推理法估算法等价转化法 待定系数法根的分布法特殊优先法分离参数法先选后排法抽签法捆绑法随机数表法插空法间接法数形结合思想第二篇 数学思想方法分类讨论思想化归转化 第三篇分析法数学逻辑方法 反证法归纳法抽象与概括法思想类比法 }

我要回帖

更多关于 椭圆第二定义证明过程 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信