维度如何跨越,二维三维四维世界的区别和四维之间到底差了多少个维度,我们会是高维生物的游戏数据吗?

蚂蚁只能看到二维,人类三维,而猫头鹰四维这个说法正确吗?人类怎样才能看到四维?

说蚂蚁是二维生物就够离谱了,现在竟然有人说猫头鹰是四维生物,这更是天方夜谭,而且很显然,无论是蚂蚁二维还是猫头鹰四维都是一些人为了博人眼球才散播出来的谣言,原因也很简单,我们地球上所有的动物都生活在三维的世界里,突然说某种生物不属于三维,必然比简单的介绍三维生物更能吸引人的观看和阅读。

好了,我们言归正传,下面详细地来说一下蚂蚁和猫头鹰为何不是二维和四维生物?

蚂蚁为何不是二维生物?

想要知道生物是在几维空间内,首先我们想弄清楚什么是“维度空间”?

维度空间是科学家们提出的一个理论,科学家认为宇宙从零维到十维,一共有十一维。其中零维就是一个没有长宽高的点,这个点被称为奇点,而一维就是由多个零维组成的,无数个点组成了一条线,所以一维有了长度,但同样没有宽和高。

二维是由多个一维组成的,有长度的线彼此交叉就形成了一个平面世界,这个世界有了宽和长,但是没有高度,这个类似于我们在纸上画一个正方形。

三维是由多个二维组成的,它的特点是同时具备长宽高,因此这个空间是立体的,而这就是我们目前生活的空间。

至于四维同样是由多个三维空间组成的,确切地说四维空间是由多个三维空间垂直堆积而成的,此时四维空间比三维空间多了一个维度-时间。虽然,我们通过时钟是可以看到时间的,但是这个时间只是我们人为定义的时间而已,四维的时间并不是简单的时钟的指针不停的向前走,它是一个时间轴,如果我们身处四维中,就能够看到自己的过去和未来。

除此之外,低维空间的生物只能看到高维空间的一个截面(高维是由多个低维组成的),也就是说高维生物是在俯视低维空间的,比如三维空间中的墙,在三维生物眼里是无法穿过去的,但是,同样的墙放到四维空间内,四维生物是完全可以穿梭自如,不受限制的。

弄清了维度空间,我们再来看一下,蚂蚁为何不是二维生物?

蚂蚁是“二维生物”的说法其实来源于科学家们的一个比喻:假如蚂蚁在一个球面上爬,它永远不会知道自己爬的不是平面而是球面。这个说法其实也能用在人身上,因为人生活的地球也是一个不规则的球体,但是我们即使从北极走到南极,也不会意识到这个球体的存在。难道这样就证明人不是三维生物了吗?

其次,二维空间中是没有高度概念的,因为它是一个平面,但是蚂蚁显然是有高度的(厚度),它不是纸片蚂蚁,有着长宽高,是绝对的三维生物。

那么,蚂蚁有没有三维的思维呢?答案也是肯定的,作为一种生活在三维空间中的三维生物,蚂蚁显然是有三维思维的,这一点通过蚂蚁知道挺起前半身以及知道把运送的物资举过头顶就可以看出来了。如果蚂蚁只有二维思维,那么它的世界里是没有“高”的,连意识里都没有高,何来的“把东西举高高”。

因此,蚂蚁是拥有着三维思维生活在三维空间中的三维生物,只不过它们的体型比较小,视野相对狭窄,所以看到的东西局限而已。

猫头鹰是“四维生物”?

通常上面我们对维度空间的解读看,猫头鹰同样也是生活在三维空间中的三维生物。我在网上搜索了一下,一些说猫头鹰是四维生物的人理由是猫头鹰的脖子可以旋转360°。

首先,脖子能够转动与几维生物是没有半毛钱关系的,因为它只要不是把头从地面上随意地扔到地下,就不牵扯维度的问题。其次,猫头鹰转头也只是270°,它之所以如此的灵活是因为颈椎骨中央还有比较大的空穴,这个空穴能够保证在转动脖子时,不会压迫到主要的神经和血管,事实上鸟类的脖子大都能转180°,只是猫头鹰转的更强一些罢了。

最关键的是如果猫头鹰是四维生物,那么我们是看不到它们的,因为低维生物是无法看到高维生物的,也就是说猫头鹰会像“神”一样俯视着我们,而我们对猫头鹰只能看到它身体的一小部分(小部分截面),更不用说还能抓住它们,把它们当“猫”撸了,如果这样的话,人至少要是五维生物。

同样的人类如果想要看到四维空间目前来说也是不可能的,这是因为我们的视网膜成像其实是二维的,配合上三维的思维,我们才有了三维的概念。因此,如果想要看到四维空间,首先要有三维视觉,之后还有有四维思维,而事实上,这两个条件我们都不具备。

地球上所有的动物都是三维动物,这是因为我们生活在一个三维的空间里,蚂蚁如此,猫头鹰也是如此。而从科学的角度看,如果蚂蚁是二维的话,我们看到它们只能是一个没有任何高度的平面,如果猫头鹰是四维生物的话,我们是无法看到它的全貌的,而且它在我们眼中就是“神”一样的存在。

最后说明一点,四维以及四维以上的空间都是人们理论上想象的,它们究竟是如何的,没有人知道,所以,人是看不到四维空间的。

二维的事物不可能知道三维,就像三维也不可能知道四维。四维认为三维没有生命,就像三维的认为二维没有生命,夏虫不可言冰。

首先,蚂蚁肯定不是二维。真正的二维是没有厚度和高度的。就算是我们看到的二维码也是有厚度的,也不能算作二维。

唯一可以算作二维的事物应该是影子,或者投影之类的,既没有厚度有没有高度,但是实实在在存在的东西。

影子没有生命,没有思想,但是可以动。影子随时都可能消失,消失代表死亡。三维事物体型、外貌、着装的巨大改变就意味着二维影子的生死存亡。

人是三维的,人有空间感,知道高矮,但是人只能控制自己的宽度,却不能控制自己的长度。其实相对而言和二维没有多大差别,或许,三维生命只是四维生命的一个影子而已。

三维人比二维人高级,看似自由自在,依然好像被命运掌控着,或者说是被四维人掌控者。

一旦四维人某件衣服穿腻了打算扔掉,那么三维人也将会消失,一个三维人的生命或许只是一个四维人的一件衣服的影子而已。

不过有些衣服虽然被遗弃了,但也有可能会被其他人捡到继续穿,其他人穿的时候就会形成另外一个影子,这就出现了我们在生活中偶尔会看到一个似曾相识的人,其实我们根本不认识。

还有一种可能,如果时隔多年四维人又捡起了那件旧衣服穿在身上,这时就会出现我们所谓的穿越,因为我们沉睡了很久,忽然来到一个新的世界。

蚂蚁、人类、猫头鹰都是三维生物,因此“蚂蚁只能看到二维、人类三维、而猫头鹰四维”这个说法是不正确的。

但是之所以题主会提出这样的疑问,可能是哪里受到了误导或对维度描述产生了误解。

蚂蚁、人类、猫头鹰会给人处于维度不同的感觉,是活动空间的区别。

蚂蚁常被用来类比二维生物,因为我们人类本身的生物局限,只能直接观察到三维物体,感受三维空间。要描述清楚二维空间,只能找寻类比例子。

比如遇到一个凹形坑,蚂蚁需要沿着坑底曲线爬行很久,才能从凹坑的这边到达那边。但是人类一个跨步就过去了。

当然真正的跨维度比之要宏大很多,这种类比只能起到一个启发思维的作用。而不是直接告诉你这就是跨维度真实情形。这是一幅鸟瞰图,猫头鹰飞翔时看地面的视角。

它能看到的维度自由度远超蚂蚁和人类。但仍然不是真正的四维。

人类要怎么才能看到四维,首先取决于对维度的定义。

假设四维仅只是三维加个时间轴。那么人类已经能看到四维,能看到物质的运动和状态转换过程,感受到时空的变化。

但是根据维度普遍定义,进行类推,四维则是三维的复合叠加。人类无论怎么努力也无法脱离三维限制,真正看到四维世界。

蚂蚁和猫头鹰的类比还有个意义,启发人们思考:维度的跨越并不是从0到1的跨越,而是也有渐进程度的。假设给维度加以量化,0到1之间还有0.1到0.9的距离。

}
文:王佳鑫审校:陈之炎
本文约6000字,建议阅读10+分钟本文带你了解PCA的基本数学原理及工作原理。

主成分分析PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。

本文用直观和易懂的方式叙述PCA的基本数学原理,不会引入严格的数学推导。希望读者在看完这篇文章后能更好地明白PCA的工作原理。

对于数组和序列(Series)来说,维度就是shape()函数返回的结果,shape()函数中返回了几个数字,就是几维(也有人看array()开头或者结尾连续中括号的数量)。

不分行列的数组叫一维数组,此时shape返回单一的维度上的数据个数。有行列之分的数组叫二维数组,也称为表。一张表最多有二个维度,复数的表构成了更高维度的表。当一个数组中存在2张3行4列的表时,shape返回的是更高维度的行和列。当数组中存在2组2张3行4列的表时,数据就是4维,shape返回(2,2,3,4)。

数组中的每一张表,都可以是一个特征矩阵或一个DataFrame,这些结构永远只有一张表,所以一定有行列,其中行是样本,列是特征。针对每一张表,维度指的是样本的数量或特征的数量,一般无特别说明,指的都是特征的数量。除了索引之外,一个特征是一维,两个特征是二维,n个特征是n维。

对图像来说,维度就是图像中特征向量的数量。特征向量可以理解为是坐标轴,一个特征向量定义一条直线,是一维;两个相互垂直的特征向量定义一个平面,即一个直角坐标系,就是二维;三个相互垂直的特征向量定义一个空间,即一个立体直角坐标系,就是三维;三个以上的特征向量相互垂直,定义人眼无法看见,也无法想象的高维空间。

降维算法中的“降维”,指的是降低特征矩阵中特征的数量。降维的目的是为了让算法运算更快,效果更好,但其实还有另一种需求:数据可视化。图像和特征矩阵的维度是可以相互对应的,即一个特征对应一个特征向量,对应一条坐标轴。所以,三维及以下的特征矩阵,是可以被可视化的,这可以帮助我们很快地理解数据的分布,而三维以上特征矩阵的则不能被可视化,数据的性质也就比较难理解。

PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。

本节希望用直观和易懂的方式叙述PCA的基本数学原理,不引入严格的数学推导。希望读者在看完这篇文章后能更好地明白PCA的工作原理。

在降维过程中,会减少特征的数量,这意味着删除数据,数据量变少则模型可以获取的信息量会变少,模型的表现可能会因此受影响。同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或者有一些特征带有的信息和其他一些特征是重复的(比如一些特征可能会线性相关)。希望能够找出一种办法来帮助我们衡量特征上所带的信息量,在降维的过程中,生成既可以减少特征的数量,又保留大部分有效信息(将那些带有重复信息的特征合并,并删除那些带无效信息的特征等等)的新特征矩阵。

在特征选择方法中有一种方法是方差过滤,即如果一个特征的方差很小,则意味着这个特征上很可能有大量取值都相同,那这一个特征的取值对样本而言就没有意义(即不带有效信息)。从方差的这种应用可以推断出,如果一个特征的方差很大,则说明这个特征上带有大量的信息。因此,在降维中,PCA使用的信息量衡量指标就是样本方差,方差越大,特征所带的信息量越多。

Var代表一个特征的方差,n代表样本量,xi代表一个特征中的每个样本取值,代表这一列样本的均值。(方差计算公式中除的是n-1,是为了得到样本方差的无偏估计)

图1的示例中解释了主成分工作方法,其中实际数据显示在2D空间中,其中X轴和Y轴用于绘制数据。

图1 主成分分析的工作方法

图2说明了在拟合主组件后的外观。第一个主成分包含数据中的最大方差,第二个主成分正交于第一个主成分,因为我们知道所有的主成分都是互相正交的。我们可以用第一个主成分本身来表示整个数据。实际上,这便是用更少的维数表示数据的优势所在,可以节省空间,也可以获取数据中的最大方差,用于下一阶段的监督学习。这是计算主成分的核心优势。

为了方便可视化和理解,先来看一组简单的二维数据降维过程。

图3 二维数据降维过程

假设现在有一组简单的数据,有特征x1和x2,三个样本数据的坐标点分别为(1,1),(2,2),(3,3)。我们可以让x1和 x2分别作为两个特征向量,很轻松地用一个二维平面来描述这组数据。这组数据现在每个特征的均值都为2,方差则等于:

每个特征的数据一模一样,因此方差也都为1,数据的方差总和是2。现在我们的目标是:只用一个特征向量来描述这组数据,即将二维数据降为一维数据,并且尽可能地保留信息量,即让数据的总方差尽量靠近2。

于是,我们将原本的直角坐标系逆时针旋转45°,形成了新的特征向量x1*和x2*组成的新平面,在这个新平面中,三个样本数据的坐标点可以表示为(√2,0),(2√2,0),(3√2,0)。可以注意到,x2*上的数值此时都变成0,x2*的均值为0,x2*的方差也为0,因此x2*明显不带有任何有效信息。此时,x1*特征上的数据均值是2√2,而方差则可表示成:

此时,根据信息含量的排序,取信息含量最大的一个特征,因为我们想要的是一维数据,所以可以将x2*删除,同时也删除图中的x2*特征向量,剩下的x1*就代表了曾经需要两个特征来代表的三个样本点。通过旋转原有特征向量组成的坐标轴来找到新特征向量和新坐标平面,将三个样本点的信息压缩到了一条直线上,实现了二维变一维,并且尽量保留原始数据的信息。一个成功的降维,就实现了。

接下来,可以推广n维特征矩阵的降维步骤和方法:

第一步:输入原数据,结构为(m,n),找出原本的n个特征向量构成的n维空间V;

第二步:决定降维后的特征数量:k;

第三步:通过某种变化,找出n个新的特征向量,以及他们构成的新n维空间V*;

第四步:将原始数据映射到新的空间V*中;

第五步:选取前k个信息量最大的特征,删除没有被选中的特征,将n维空间降为k维。

在第三步中,我们用来找出n个新特征向量,让数据能够被压缩到少数特征上并且总信息量不损失太多的过程就是矩阵分解。PCA使用方差作为信息量的衡量指标,并且特征值分解来找出空间V。降维时,它会通过一系列数学推导(比如说,产生协方差矩阵)将特征矩阵X分解为以下三个矩阵,其中Q和Q-1是正交矩阵,P是一个对角矩阵(除了对角线上有值其他位置都是0的矩阵),其对角线上的元素就是方差。降维完成之后,PCA找到的每个新特征向量就叫做“主成分”,而被丢弃的特征向量被认为信息量很少,这些信息很可能就是噪音(降维算法的矩阵计算量比较大,运行比较缓慢)。

我们知道,PCA是将已存在的特征进行压缩,降维完毕后的特征不是原本的特征矩阵中的任何一个特征,而是通过某些方式组合起来的新特征。通常来说,在新的特征矩阵生成之前,我们无法知晓PCA都建立了怎样的新特征向量,新特征矩阵生成之后也不具有可解释性。新特征虽然带有原始数据的信息,却已经不是原数据上代表着的含义了。因此,以PCA为代表的降维算法是一种特征创造的方法。

所以,PCA一般不适用于探索特征和标签之间的关系的模型(如线性回归等),因为无法解释的新特征和标签之间的关系不具有意义。在线性回归模型中,一般使用特征选择。

基于上述的总体理论讲述,接下来具体阐述“数学推导”中的算法步骤和过程。

1)将原始数据按列组成n行m列矩阵

的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值得到新的矩阵X;

4)求出协方差矩阵的特征值及对应的特征向量;

5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵Q;

6)Y = QK即为降维到k维后的数据。

(这里的核心问题是协方差矩阵的特征值分解)

例题:已知现在有一个二维矩阵,如下所示,请降至一维。

1)原始数据是两行五列矩阵,其中n=2,m=5;

2)这是一个已经去掉均值的矩阵。其中每一行是一个维度,而每一列是一个样本。去均值的运算是针对每一个维度进行的运算,也就是说每一行减去这一行的均值;

3)计算协方差矩阵P。

由于已经进行了去均值化,所以可以直接求取协方差矩阵。需要注意的是,协方差矩阵计算的是每一个维度之间的协方差,不是计算样本之间的协方差,所以本例中的协方差矩阵P为一个2×2的实对称矩阵。

4)协方差矩阵的特征值及对应的特征向量;

可以得到两个特征值,对应得到标准化的特征向量如下:

5)构建变换矩阵Q并降维;

到这里只需要将变换矩阵与原始矩阵相乘既可以完成降维的工作,在进行降维的过程中有两个容易出现的易错点。首先,特征向量的先后顺序要按照特征值的大小顺序进行排列;其次,如果原始数据的矩阵每一行是一个维度,每一列是一个样本的话,这个时候变换矩阵中的每一行是一个特征向量,如下变换矩阵Q。

同时,我们可以验证协方差矩阵P(实对称矩阵)的对角化。

6)最后用Q的第一行乘以X矩阵,就得到了降维后的表示:

降维投影结果如下图所示:

2.4 选择主成分个数(即k的值)

那么该如何选择k,即保留多少个PCA主成分呢?在上述简单的二维实验中,保留第一个成分看起来是自然的选择。对于高维度数据来说,k值的确定就比较复杂:如果k的值过大,数据压缩率不高,在极限情况 k = n 时,等于是在使用原始数据;相反地,如果k过小,那数据的近似误差太大。

决定k值时,通常会考虑不同k值可保留的方差百分比。具体来说,如果 k = n 时,那么得到的结果是对数据的完美近似,也就是保留了100%的方差,即原始数据的所有变化都被保留下来;相反,如果 k = 0 时,那等于是使用零向量来逼近输入数据,也就是只有0%的方差被保留下来。

一般而言,设c1,c2,…,cn表示协方差矩阵P的特征值(按由大到小顺序排列),使得cj为对应于特征向量的特征值。那么,如果我们保留前k个成分,则保留的方差百分比可以表示为:

在sklearn中,重要参数n_components是降维后的维度,即降维后需要保留的特征数量,降维流程中第二步里需要确认的k值,当参数n_components中不填写任何值,则默认返回min(X.shape)个特征,没有减少特征的个数。一般来说,不会使用这种输入方式。但却可以使用这种输入方式来画出累计可解释方差贡献率曲线,以此选择最好的n_components的取值。

累积可解释方差贡献率曲线是一条以降维后保留的特征个数为横坐标,降维后新特征矩阵捕捉到的可解释方差贡献率为纵坐标的曲线,能够帮助我们决定n_components最好的取值。

表示降维后每个新特征向量上所带的信息量大小(又叫可解释性方差,sklearn中用属性explained_variance_表示),

表示特征向量所占的信息量占原始数据总信息量的百分比(又叫可解释方差贡献率,sklearn中用属性explained_variance_ratio_表示)。

除了输入整数,n_components还有哪些选择呢?数学大神Minka, T.P.找出了让PCA用最大似然估计自选超参数的方法,输入n_components=‘mle’作为n_components的参数输入,就可以调用这种方法。

输入[0,1]之间的浮点数,并且让参数svd_solver =‘full’,表示希望降维后的总解释性方差占比大于n_components指定的百分比,即是说,希望保留百分之多少的信息量。比如说,如果我们希望保留97%的信息量,就可以输入n_components=0.98,PCA会自动选出能够让保留的信息量超过97%的特征数量。

在解释svd_solver参数之前,我们首先来阐述一下SVD算法,SVD和主成分分析PCA都属于矩阵分解算法的一部分,都是通过分解特征矩阵来进行降维。

若A是一个m*n的矩阵,且可用等式 进行表示,则该过程被称之为奇异值分解SVD。中第i列的向量被称为关于的左奇异向量,中第i列的向量被称为关于的右奇异向量。

由上述分析可知,PCA的核心问题是协方差矩阵

的特征值分解,SVD的核心问题在于对

进行特征值分解。很明显,PCA和SVD所解决的问题非常相似,都是对一个实对称矩阵进行特征值分解。(实对称矩阵:如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(

,i和j为元素的脚标),则称A为实对称矩阵,实对称矩阵一定可以对角化)

讲完SVD算法,就有一个疑问了,参数svd_solver是奇异值分解器的意思,为什么PCA算法会有有关奇异值分解的参数?

我们之前曾经提到过,PCA和SVD涉及了大量的矩阵计算,两者都是运算量很大的模型,但其实SVD算法可以不计算协方差矩阵等复杂过程,直接求出新特征空间和降维后的特征矩阵。

简而言之,SVD在矩阵分解中的过程比PCA简单快速,虽然两个算法都走一样的分解流程,但SVD可以直接算出

。但是SVD的信息量衡量指标比较复杂,“奇异值”理解起来也比“方差”来得困难。因此,sklearn将降维流程拆成了两部分:一部分是计算特征空间

,由SVD完成,而矩阵U和Σ虽然会被计算出来,但完全不会被用到。另一部分是映射数据和求解新特征矩阵,由PCA完成,即之前PCA中Y = QX 的Q用

来代替,实现了用SVD的性质减少计算量而信息量的评估指标是方差的目的。具体流程如下图:

接下来,我们回归参数svd_solver的讲解。

生成精确完整的SVD,适合数据量比较适中,计算时间充足的情况,生成的精确完整的SVD的结构为:

运行截断奇异值分解,分解时就将特征数量降到n_components中输入的数值k,可以加快运算速度,适合特征矩阵很大的时候,但一般用于特征矩阵为稀疏矩阵的情况,此过程包含一定的随机性质。截断后的SVD分解出的结构为:

适合特征矩阵巨大,计算量十分庞大的情况,要比“full”方法计算快很多。

通过SVD和PCA的合作,在矩阵分解时不使用PCA本身的特征值分解,而使用奇异值分解来减少计算量。sklearn实现了一种计算更快更简单,效果却很好的“合作降维“。在sklearn中,矩阵U和Σ虽然会被计算出来(同样也是一种比起PCA来说简化非常多的数学过程,不产生协方差矩阵),但完全不会被用到,也无法调取查看或者使用,因此我们可以认为,U和Σ在fit()之后就被遗弃了。奇异值分解追求的仅仅是

,就可以计算出降维后的特征矩阵。在transform()过程之后,fit()中奇异值分解的结果

就并会被保存在属性components_当中,并可以调用查看。

PCA是将已存在的特征进行压缩,降维完毕后的特征不是原本的特征矩阵中的任何一个特征,而是通过某些方式组合起来的新特征。在新的特征矩阵生成之前,无法知晓PCA都建立了怎样的新特征向量,新特征矩阵生成之后也不具有可解释性。新特征虽然带有原始数据的信息,却已经不是原数据上代表着的含义了。因此,以PCA为代表的降维算法是一种特征创造的方法。

PCA一般不适用于探索特征和标签之间的关系的模型(如线性回归等),因为无法解释的新特征和标签之间的关系不具有意义。在线性回归模型中,一般使用特征选择。

数据派研究部成立于2017年初,以兴趣为核心划分多个组别,各组既遵循研究部整体的知识分享实践项目规划,又各具特色:

算法模型组:积极组队参加kaggle等比赛,原创手把手教系列文章;

调研分析组:通过专访等方式调研大数据的应用,探索数据产品之美;

系统平台组:追踪大数据&人工智能系统平台技术前沿,对话专家;

自然语言处理组:重于实践,积极参加比赛及策划各类文本分析项目;

制造业大数据组:秉工业强国之梦,产学研政结合,挖掘数据价值;

数据可视化组:将信息与艺术融合,探索数据之美,学用可视化讲故事;

网络爬虫组:爬取网络信息,配合其他各组开发创意项目。

点击文末“阅读原文”,报名数据派研究部志愿者,总有一组适合你~

如需转载,请在开篇显著位置注明作者和出处(转自:数据派THUID:DatapiTHU),并在文章结尾放置数据派醒目二维码。有原创标识文章,请发送【文章名称-待授权公众号名称及ID】至联系邮箱,申请白名单授权并按要求编辑。

未经许可的转载以及改编者,我们将依法追究其法律责任。

点击“阅读原文”加入组织~

}

生命的形式不同,观察的方式也是不同的,其差异之大,不同维度的生物是无法想象的。人类的视觉,听觉,重量测量,甚至引力波探测,射线检测等研究认识世界的方法,是我们三维生物研究三维世界用的。二维生物如果存在,我们不仅检测不到,甚至他们的生命形式也许在我们眼里不归类为有生命。放在四维也一样。

具体点说,咱们三维世界人类的研究,哪怕是到了原子,夸克级别,依然是有厚度的,依然是三维的,你想要看到二维小人,那他得反光,或者有重量或者balabala(人类各种探测方法都是研究三维用的),得起码有一点点点点厚度,可惜,二维的小人以及他所处的整个无限大的二维宇宙,都是没有厚度的,咱们观察不到,甚至探测不到。

另外我想解释一下各维空间及其内生命对其世界的认识。

首先,四维空间是人类无法想象到的。

一维生物(假如是条线段),能看到点,看不到整条线段,二维生物只能观察到线段,却无法观察到自己的二维全貌。(应该没有零维生物,毕竟零维空间可以说是没有空间,仅仅一个点。)

三维生物只能看到二维画面,比如人类,只能看到二维画面,你不可能看到另一个人的时候直接看到他的身体的每一个截面,即三维画面。人可以通过解剖观察来想象到,但永远无法直接看到。

同理,二微生物也只能想象到自己应该有面积的身体,但无法直接看到,因为他们生活在一个平面上(这就是他们心中无限大的宇宙了),看到的只有线段。然而,咱们三维生物却可以直接观察到二维生物(一个图案)的全貌,从头到尾,每一条线段都直接观察到。但是二微生物呢,只能想象到二维,三维是超出想象的,无法思考出来,因为他们的观察信息才是一维,仅仅是一条条线段。

同理,三维生物,凭借自己观察到的二维画面,可以想象到自己的三维形象,却无法想象四维的样子,毕竟咱们的三维宇宙就是无限大的了,的确是无限大,但这个无限大,永远是禁锢在三维里,人类从没有机会跳出三维宇宙(这让我想到一些幽灵火车之类的灵异事件,哈哈)

再反过来说,四维生物可以清楚地看到三维生物的每个部分,包括每一个角度的横截面,纵截面和斜截面,就如同我们三维生物可以直接看到二维生物身上的每一个线段,是一样的。

你问三维生物看四维生物是什么样子的话,我只能说,如果四维生物和咱们生活的的三维空间接触到了,你或许有机会可以发现一个三维物体,跟平常见的东西也没啥太大区别。你一定想不出来从外面看(四维)是什么样子情形,因为三维生物根本不具备这样的能力!!

你可以想象你是一条线段,生活在一条无限长的直线上(这便是你所在的的无穷大的宇宙),如果我(三维生物)把手指压在这条直线上,作为一维生物的你,能看到什么?答案是,直接能看到的是一个点,你研究之后可以发现是一条线段,和你世界里的普通物体并无两样,你如何能想象到我三维的形态?

三维可以想的通二维,四维可以想的通咱们三维,但是无法观察到,反而低维生物倒是可以看到高维生物在他们世界的“投影”。五维六维等都是一样的道理,但是作为三维生物的我们,无法观察二维,却能明白二维,无法明白四维,却说不定有机会观察到四维在我们世界的投影。

}

我要回帖

更多关于 二维三维四维世界的区别 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信