行列式按行列展开法则怎样求和?

熟练掌握行列式的性质,再结合一些技巧来计算行列式。该文简单介绍几种行列式的计算方法:通过按行(列)展开,或者通过添加行列使得行列式转化为递归式,此时可通过简单递归或者联立等式来求得原行列式;通过观察行列式,如果行和或列和相等的话,可以通过提出行和,再消去一行一列;将一个行列式分解成两个行列式的乘积,或者两个行列式的和,再结合行列式的性质及其他计算方法分别求出行列式;最后的参数法也是非常的巧妙,会将行列式转化为函数问题。行列式的计算技巧性很强,平时多积累,是非常好的思维训练素材。按某一行(列)展开计算行列式 (Hessenberg型行列式)\mathbf{D_n}= \left|\begin{array}{cccccc} x&-1&0&\ldots&0&0\\ 0&x&-1&\ldots&0&0\\ 0&0&x&\ldots&0&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&\ldots&x&-1\\ a_n&a_{n-1}&a_{n-2}&\ldots&a_2&x+a_1\\ \end{array}\right|\\ 解析:按第一列展开\begin{aligned} \mathbf{D_n}&=x\cdot \left|\begin{array}{cccccc} x&-1&\ldots&0&0\\ 0&x&\ldots&0&0\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\ldots&x&-1\\ a_{n-1}&a_{n-2}&\ldots&a_2&x+a_1\\ \end{array}\right|+a_n\cdot(-1)^{n+1}(-1)^{n-1}\\ &=x\cdot{\mathbf{D_{n-1}}}+a_n\\ &=x[x\cdot{\mathbf{D_{n-2}}}+a_{n-1}]+a_n\\ &=x^2\mathbf{D_{n-2}}+a_{n-1}x+a_n\\ &=\cdots\\ &=x^{n-2}\mathbf{D_2}+a_3x^{n-3}+a_4x^{n-4}+\cdots+a_{n-1}x+a_n\\ \\ \mathbf{D_2}&=\left|\begin{array}{cc} x&-1\\ a_2&x+a_1\\ \end{array}\right|\\ &=x^2+a_1x+a_2 \end{aligned}\\ 所以\mathbf{D_n}=x^n+a_1x^{n-1}+a_2x^{n-2}+a_3x^{n-3}+a_4x^{n-4}+\cdots+a_{n-1}x+a_n\\ 添加一行(列)计算行列式: \left|\begin{array}{cccc} 1+x_1^2&x_1x_2&\ldots&x_1x_n\\ x_2x_1&1+x_2^2&\ldots&x_2x_n\\ \vdots&\vdots&\ddots&\vdots\\ x_nx_1&x_nx_2&\ldots&1+x_n^2\\ \end{array}\right|\\ 解:添加一行一列 \begin{aligned}D_n&= \left|\begin{array}{ccccc} 1&x_1&x_2&\ldots&x_n\\ 0&1+x_1^2&x_1x_2&\ldots&x_1x_n\\ 0&x_2x_1&1+x_2^2&\ldots&x_2x_n\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&x_nx_1&x_nx_2&\ldots&1+x_n^2\\ \end{array}\right|\\ &=\left|\begin{array}{ccccc} 1&x_1&x_2&\ldots&x_n\\ -x_1&1&0&\ldots&0\\ -x_2&0&1&\ldots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ -x_n&0&0&\ldots&1\\ \end{array}\right|\\ &=\left|\begin{array}{ccccc} 1+x_1^2+x_2^2+\cdots+x_n^2&x_1&x_2&\ldots&x_n\\ 0&1&0&\ldots&0\\ 0&0&1&\ldots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\ldots&1\\ \end{array}\right|\\ &=1+\sum_{i=1}^nx_i^2 \end{aligned}\\ 该行列式也可以通过拆分为两个行列式之和,然后分别求两个行列式。可参考“行列式的拆分”逐行(列)求和计算行列式:\left|\begin{array}{cccc} 1+x&2&\ldots&n\\ 1&2+x&\ldots&n\\ \vdots&\vdots&\ddots&\vdots\\ 1&2&\ldots&n+x\\ \end{array}\right|\\ 解:\begin{aligned} \left|\begin{array}{cccc} 1+x&2&\ldots&n\\ 1&2+x&\ldots&n\\ \vdots&\vdots&\ddots&\vdots\\ 1&2&\ldots&n+x\\ \end{array}\right
&=\left|\begin{array}{cccc} x+\sum_{i=1}^ni&2&\ldots&n\\ x+\sum_{i=1}^ni&2+x&\ldots&n\\ \vdots&\vdots&\ddots&\vdots\\ x+\sum_{i=1}^ni&2&\ldots&n+x\\ \end{array}\right|\\ &=\left|\begin{array}{cccc} 1&2&\ldots&n\\ 1&2+x&\ldots&n\\ \vdots&\vdots&\ddots&\vdots\\ 1&2&\ldots&n+x\\ \end{array}\right|\cdot[x+\frac{n(n+1)}{2}]\\ &=\left|\begin{array}{cccc} 1&0&\ldots&0\\ 1&x&\ldots&0\\ \vdots&\vdots&\ddots&\vdots\\ 1&0&\ldots&x\\ \end{array}\right|\cdot[x+\frac{n(n+1)}{2}]\\ &=[x+\frac{n(n+1)}{2}]\cdot{x^{n-1}}\\ &=x^n+\frac{n^2+n}{2}x^{n-1} \end{aligned}\\ 行列式的“因式分解”计算行列式: \left|\begin{array}{cccc} a_1-b_1&a_1-b_2&\ldots&a_1-b_n\\ a_2-b_1&a_2-b_2&\ldots&a_2-b_n\\ \vdots&\vdots&\ddots&\vdots\\ a_n-b_1&a_n-b_2&\ldots&a_n-b_n\\ \end{array}\right|\\ 解: \begin{aligned}D&= \left|\begin{array}{cccc} a_1-b_1&a_1-b_2&\ldots&a_1-b_n\\ a_2-b_1&a_2-b_2&\ldots&a_2-b_n\\ \vdots&\vdots&\ddots&\vdots\\ a_n-b_1&a_n-b_2&\ldots&a_n-b_n\\ \end{array}\right|\\ &=\left|\begin{array}{cccc} a_1&-1&\ldots&0\\ a_2&-1&\ldots&0\\ \vdots&\vdots&\ddots&\vdots\\ a_n&-1&\ldots&0\\ \end{array}\right|\cdot\left|\begin{array}{cccc} 1&1&\ldots&1\\ b_1&b_2&\ldots&b_n\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\ldots&0\\ \end{array}\right|\\ &=\begin{cases}(a_2-a_1)(b_2-b_1),\quad n=2\\0,\quad n>2\end{cases} \end{aligned}\\ 设 S_k=x_1^k+x_2^k+\cdots+x_n^k ,其中 k 为任意非负整数,证明: D= \left|\begin{array}{cccc} S_0&S_1&\ldots&S_{n-1}\\ S_1&S_2&\ldots&S_n\\ \vdots&\vdots&\ddots&\vdots\\ S_{n-1}&S_n&\ldots&S_{2n-2}\\ \end{array}\right|=\prod_{1\leq i< j\leq n}(x_i-x_j)^2\\ 证明: \begin{aligned}D&=\left|\begin{array}{cccc}1&1&\ldots&1\\x_1&x_2&\ldots&x_n\\\vdots&\vdots&\ddots&\vdots\\x_1^{n-1}&x_2^{n-1}&\ldots&x_n^{n-1}&\end{array}\right|\cdot\left|\begin{array}{cccc}1&x_1&\ldots&x_1^{n-1}\\1&x_2&\ldots&x_2^{n-1}\\\vdots&\vdots&\ddots&\vdots\\1&x_n&\ldots&x_n^{n-1}&\end{array}\right|\\&=\prod_{1\leq i< j\leq n}(x_j-x_i)\cdot\prod_{1\leq i< j\leq n}(x_j-x_i)\end{aligned}\\ 行列式的拆分计算行列式: \left|\begin{array}{ccccc} x&b&b&\ldots&b\\ c&x&b&\ldots&b\\ c&c&x&\ldots&b\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ c&c&c&\ldots&x\\ \end{array}\right|\\ 解: \begin{aligned}D_n&= \left|\begin{array}{ccccc} x&b&b&\ldots&b\\ c&x&b&\ldots&b\\ c&c&x&\ldots&b\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ c&c&c&\ldots&x\\ \end{array}\right|\\ &=\left|\begin{array}{ccccc} c+(x-c)&b&b&\ldots&b\\ c&x&b&\ldots&b\\ c&c&x&\ldots&b\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ c&c&c&\ldots&x\\ \end{array}\right|\\ &=c\cdot\left|\begin{array}{ccccc} 1&b&b&\ldots&b\\ 1&x&b&\ldots&b\\ 1&c&x&\ldots&b\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 1&c&c&\ldots&x\\ \end{array}\right|+\left|\begin{array}{ccccc} x-c&b&b&\ldots&b\\ 0&x&b&\ldots&b\\ 0&c&x&\ldots&b\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&c&c&\ldots&x\\ \end{array}\right|\\ &=c\cdot\left|\begin{array}{ccccc} 1&0&0&\ldots&0\\ 0&x-b&0&\ldots&0\\ 0&c-b&x-b&\ldots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&c-b&c-b&\ldots&x-b\\ \end{array}\right|+(x-c)\cdot D_{n-1}\\ &=c(x-b)^{n-1}+(x-c)D_{n-1} \end{aligned}\\ 同理可得 D_n=b(x-c)^{n-1}+(x-b)D_{n-1}\\ 联立两个等式,消去 D_{n-1} 得 (b-c)\cdot D_n=b(x-c)^n-c(x-b)^n\\ 所以当 b\neq c 时 D_n=\frac{b(x-c)^n-c(x-b)^n}{b-c}\\ 而 b=c 时 D_n=[x+(n-1)b](x-b)^{n-1}\\ 计算行列式: \left|\begin{array}{cccc} 1+x_1^2&x_1x_2&\ldots&x_1x_n\\ x_2x_1&1+x_2^2&\ldots&x_2x_n\\ \vdots&\vdots&\ddots&\vdots\\ x_nx_1&x_nx_2&\ldots&1+x_n^2\\ \end{array}\right|\\ 解: \begin{aligned}D_n&=\left|\begin{array}{cccc} 1+x_1^2&x_1x_2&\ldots&0\\ x_2x_1&1+x_2^2&\ldots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\ldots&1\\ \end{array}\right|+\left|\begin{array}{cccc} 1+x_1^2&x_1x_2&\ldots&x_1x_n\\ x_2x_1&1+x_2^2&\ldots&x_2x_n\\ \vdots&\vdots&\ddots&\vdots\\ x_nx_1&x_nx_2&\ldots&x_n^2\\ \end{array}\right|\\ &=D_{n-1}+x_n^2\left|\begin{array}{cccc} 1+x_1^2&x_1x_2&\ldots&x_1\\ x_2x_1&1+x_2^2&\ldots&x_2\\ \vdots&\vdots&\ddots&\vdots\\ x_1&x_2&\ldots&1\\ \end{array}\right|\\ &=D_{n-1}+x_n^2\left|\begin{array}{cccc} 1&0&\ldots&0\\ 0&1&\ldots&0\\ \vdots&\vdots&\ddots&\vdots\\ x_1&x_2&\ldots&1\\ \end{array}\right|\\ &=D_{n-1}+x_n^2\\ &=\cdots\\ &=1+x_1^2+x_2^2+\cdots+x_n^2 \end{aligned}\\ 参数法求 D_n= \left|\begin{array}{ccccc} x_1&a&\ldots&a&a\\ b&x_2&\ldots&a&a\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ b&b&\ldots&x_{n-1}&a\\ b&b&\ldots&b&x_n\\ \end{array}\right|\\ 解:记 D_n(t)= \left|\begin{array}{ccccc} x_1+t&a+t&\ldots&a+t&a+t\\ b+t&x_2+t&\ldots&a+t&a+t\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ b+t&b+t&\ldots&x_{n-1}+t&a+t\\ b+t&b+t&\ldots&b+t&x_n+t\\ \end{array}\right|=D_n+t\cdot r\\ 其中 t 与 r 无关。分别取 t=-a 和 t=-b ,可得:D_n(-a)=D_n-a\cdot r=\prod_{i=1}^n(x_i-a)\\D_n(-b)=D_n-b\cdot r=\prod_{i=1}^n(x_i-b)\\ 两式联立消去 r 可得 D_n=\frac{a\prod_{i=1}^n(x_i-b)-b\prod_{i=1}^n(x_i-a)}{a-b}\\ 想要了解更多的数学内容,请关注公众号“究尽数学”和“究尽中学数学”。}

我要回帖

更多关于 行列式按行列展开法则 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信