题目如下,求解大学线性代数

线性代数应用题.doc


线性代数应用题集锦 郑 波 重庆文理学院数学与统计学院 2011年10月 目 录 案例一. 交通网络流量分析问题 1 案例二. 配方问题 4 案例三. 投入产出问题 6 案例四. 平板的稳态温度分布问题 8 案例五. CT图像的代数重建问题 10 案例六. 平衡结构的梁受力计算 12 案例七. 化学方程式配平问题 14 案例八. 互付工资问题 16 案例九. 平衡价格问题 18 案例十. 电路设计问题 20 案例十一. 平面图形的几何变换 22 案例十二. 太空探测器轨道数据问题 24 案例十三. 应用矩阵编制Hill密码 25 案例十四. 显示器色彩制式转换问题 27 案例十五. 人员流动问题 29 案例十六. 金融公司支付基金的流动 31 案例十七. 选举问题 33 案例十八. 简单的种群增长问题 34 案例十九. 一阶常系数线性齐次微分方程组的求解 36 案例二十. 最值问题 38 附录 数学实验报告模板 39 这里收集了二十个容易理解的案例. 和各类数学建模竞赛的题目相比, 这些案例确实显得过于简单. 但如果学生能通过这些案例加深对线性代数基本概念、理论和方法的理解, 培养数学建模的意识, 那么我们初步的目的也就达到了. 案例一. 交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。 图1 某地交通实况 图2 某城市单行线示意图 【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆). 图3 某城市单行线车流量 (1) 建立确定每条道路流量的线性方程组. (2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x4 = 350时, 确定x1, x2, x3的值. (4) 若x4 = 200, 则单行线应该如何改动才合理? 【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等. 【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足 500 = x1 + = 100, x2 = 400, x3 = (100 < 0. 这表明单行线“③(④”应该改为“③(④”才合理. 【模型分析】(1) 由(A, b)的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计. (2) 由可得, , , 这就是说x1, x2, x3, x4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值. 参考文献 陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 出版社, 200Matlab实验题 图4 某城市单行线车流量 (1)建立确定每条道路流量的线性方程组. (2)分析哪些流量数据是多余的. 500多余 (3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计. 案例二. 配方问题 在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 图5 日常膳食搭配 图6 几种常见的作料 【模型准备】一种佐料由四种原料A、B、C、D混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成? 【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A、B、C、D四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A、B、C、D四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x袋第一种规格的佐料与y袋第二种规格的佐料混合在一起,

}

线性代数初等行变换的技巧,高手进  以下文字资料是由(历史新知网)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!

线性代数初等行变换的技巧,高手进

初等行变换一般用来化梯矩阵和行简化梯矩阵
方法一般是从左到右, 一列一列处理
先把一个比较简单(或小)的非零数交换到左上角(其实到最后交换也行),
用这个数把第1列其余的数消成零.
处理完第一列后, 第一行与第一列就不要管它了, 再用同样方法处理第二列(不含第一行的数)
有你认为不好处理的题目拿来问吧 我帮你解析.

线性代数初等行变换技巧!跪求!高手!

没有什么技巧的,按照三条规则,从上往下化成阶梯型。

线性代数初等变换的方法

初等变换是线性代数中最基本的方法,它体现了线性代数的本质——加法与数乘。在解决线性问题如求矩阵逆、解线性方程组、计算行列式等都具有步骤简单、运算量小、易于掌握等优点。然而,正如西安交通大学的邓建中教授在《工科线性代数流行教材的失误及修改意见》一文中指出的那样,近年涌现的一些线性代数教材却大都忽略了这一点,而将行列式法当作讲授重点,过于留恋行列式的计算技巧,给学生的学习增添了麻烦,对初等变换却轻描淡写。其次,有的教材冷落线性方程组的向量形式,增添麻烦。例如线性方程组可写成矩阵形式AX=b或0,也可写成向量形式 或0。其中 是A的列向量。当我们要判断向量组 是否线性相关时,由定义写出 ,根据方程组的向量形式,既判断此方程组是否有非零解,故只需对其系数矩阵作初等变换,化为阶梯形就一目了然。“行初等变换不改变列向量间的线性关系”是一个很有用的结论,很多教材却没有提及,有些也是针对特殊情况略加表述。另外,有的教材将行与列相提并论,令人迷惑。众所周知,行、列变换都不改变矩阵的秩,但对于解线性方程组却只有行变换不改变解。判断向量组的线性相关性、解方程组这类问题中应当只用行变换,少用列交换,绝对不可用列变换。因此,在参阅一些有关线性代数内容的专著后,本文拟以初等变换为主线,并将其贯穿全文,加强矩阵与向量形式的应用,针对线性代数中的各类问题,主要介绍初等变换法,着重讨论初等变换在不同场合的不同应用,尝试打破传统的编写秩序,形成以初等变换为主线的线性代数层次结构。1 初等变换线上性方程组中的应用 线上性代数中,初等变换是一种基本的运算手段,它可以用来解决诸如矩阵的秩、线性方程组的求解、行列式的计算等各类计算问题,可以大大简化计算过程,减少计算量。在解决某些重要问题,如线性相关、矩阵的逆时,它也是一种重要的手段。 1.1 初等变换与消元法 解线性方程组的方法——消元法,是将已知的线性方程组转化为一个等价的线性方程组,在此方程组中每一个方程的第一个非零系数总位于前一个方程的第一个非零系数的右边。这时称此方程组处于阶梯形,例如:阶梯形的线性方程组,将一个方程组转化为阶梯形一般有如下三种操作: I.用一个非零数乘以一个方程; II.用一个数乘以一个方程后,再加到另一个方程上; III.互换两个方程的位置. 以上三种操作称为线性方程组上的初等变换。当这些变换连续地施加在任意阶的线性方程组时,总能将方程组转化为另一个等价的线性方程组。下面我们将一个已知的线性方程组转化为阶梯形的过程描述如下: 设 是某一 线性方程组中的变数 第一步:选择第I个方程,且其中 的系数不为零,若第一个方程满足条件则止,否则将第一个方程与第I个方程互换,第二步:对 进行 运算,使其中的 系数化为1 第三步:进行 变换,以消去除第一个方程之外的所有方程中的项 第四步:先将当前的第一个方程忽略,对其余的消去 项的方程重复执行第一、二、三步连续地进行这种消元法,直到仅剩一个方程,消元过程到此为止 当将一个方程组化为阶梯形后,求其解便成了一个简单问题,我们以采用向后迭代法,从最后一个方程入手,由下至上移动逐个求出方程的解。可以说,消元法是解线性方程组最重要的方法之一,而初等变换则是消元法的基石,没有初等变换也就没有了消元法。

请总结线性代数中初等行变换的用途

1. 求矩阵的秩,化行阶梯矩阵, 非零行数即矩阵的秩
同时用列变换也没问题, 但行变换就足够用了!
求向量组的秩和极大无关组
(A,b)化为行阶梯形, 判断方程组的解的存在性
把一个向量表示为一个向量组的线性组合
方程组有解时, 求出方程组的全部解
求出向量组的极大无关组, 且将其余向量由极大无关组线性表示

线性代数初等变换技巧…就是化不对啊

不要着急 慢慢的变换 没有什么本质上的困难
目标是使你的矩阵有尽量多的“0”项
对于要变换的矩阵 首先要观察一下 是否有一些行或列容易变换出0来
如果观察不到,那么用Gauss消元:
先用第三种行变换 使第一列只有第一个元素非0
然后如此再对除去第一行与第一列的矩阵类似做,使得第二列只有a22非0,以此类推
一般按照套路变换不会出错

一道线性代数线性变换的题

初等变换可以解决线性代数中所有用有限步代数运算可以解决的问题,比如计算行列式,解线性方程组,计算满秩分解,LU分解,QR分解,解最小二乘问题,合同变换标准型等.但是不能解决的问题有:奇异值分解,特征值问题,极分解等.不要光想着应付作业,要深入理解本质.

线性代数里初等变换时不能进行列变换的两种情况是什么?

主要有解线性方程组,可以做三种行变化,以及第一种列变换,也就是可以交换两列(希望,你能明白为什么会这样额)
还有一种就是用初等变换求矩阵的逆,仍然希望楼主能知道原理,这样你就明白为什么只做行变化得到的才是矩阵的逆啦

线性代数里矩阵的初等变换有什么技巧么?

第一列 除了第一行 剩下的行都用数乘的做法化为零 最基本也是最重要的做法,
然后就比较容易化为行最简行了 剩下的第二列 依次往后 做法基本相同 但是 不要影响前一列就好了

}

线性代数:国内的我觉得李尚志的线性代数和蓝以中的高代简明教程非常好,概念讲解很通俗易懂,学计算技巧的话建议研读许以超的线性代数与矩阵论(第二版),里面有传说中的打洞技巧。龚晟写了本小书《线性代数五讲》,观点很高,阅读时需要有一定代数基础。

最近读过的David.Poole的Linear Algebra 内容上同lay的书差不多,但讲解要清晰,是一本难得的好书。
国外的线性代数书籍基本上结合一些数值分析方面的问题,而且讲国内书不常讲的svd,LMS,有时还讲一点伪逆,一般结合应用,讲的非常好,也让人感觉线性代数非常美。

张贤达的《矩阵分析与应用 》与Horn,R.A.的Matrix Analysis 可作为参考手册,经常翻翻不坏。
方保镕的矩阵论书有几章不错,比如广义逆那章。
程云鹏的矩阵论已经出到第3版了(和第2版区别不大),是许多学校的考博参考书,我觉得一般。

需要深入学习广义逆的目前比较新的有Ben-Israel 的 Generalized Inverses(Springer), 2003出2版了,第一本有译本,图书馆应该都能找到,我记得c.r rao也有一本广义逆专著,可是没见过。

网上有个东南大学的教学视频-《工程矩阵论》,听听还不错,就是线性空间等一些基本的东西讲的比较多,矩阵论方面的太少了。

}

我要回帖

更多关于 线性代数概念题 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信